当a>1时,在同一坐标系中,函数y=a-x与y=logax的图象( ) A. B. C. D. |
|
已知对于任意非零实数a和b,不等式|2a+b|+|2a-b|≥|a|(|2+x|+|2-x|)恒成立,试求实数x的取值范围. |
|
以直角坐标系的原点O为极点,x轴的正半轴为极轴.已知点P的直角坐标为(1,-5),点M的极坐标为(4,).若直线l过点P,且倾斜角为,圆C以M为圆心、4为半径. (Ⅰ)求直线l的参数方程和圆C的极坐标方程; (Ⅱ)试判定直线l和圆C的位置关系. |
|
如图,AB是⊙O的弦,C、F是⊙O上的点,OC垂直于弦AB,过F点作⊙O的切线交AB的延长线于D,连接CF交AB于E点. (I)求证:DE2=DB•DA. (II)若BE=1,DE=2AE,求DF的长. |
|
设椭圆的离心率,右焦点到直线的距离,O为坐标原点. (I)求椭圆C的方程; (II)过点O作两条互相垂直的射线,与椭圆C分别交于A,B两点,证明点O到直线AB的距离为定值,并求弦AB长度的最小值. |
|
已知函数f(x)=-ex+kx+1,x∈R. (I)若k=2e,试确定函数f(x)的单调区间; (II)若k>0,且对于任意x∈R,f(|x|)<1恒成立,试确定实数k的取值范围. |
|
数列{an}的前n项和为. (I)(求{an}的通项公式; (II)若数列{cn}满足,且{cn}的前n项和为Tn,求Tn. |
|
如图,在直三棱柱ABC-A1B1C1中,AB⊥BC,P为A1C1的中点,AB=BC=kPA. (I)求三棱锥P-AB1C与三棱锥C1-AB1P的体积之比; (II)当k为何值时,直线PA⊥B1C. |
|
现有8名奥运会志愿者,其中志愿者A1,A2,A3通晓日语,B1,B2,B3通晓俄语,C1,C2通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (Ⅰ)求A1被选中的概率; (Ⅱ)求B1和C1不全被选中的概率. |
|
给出下列四个命题: ①“∃x∈R,x2-x>0”的否定是“∀x∈R,x2-x≤0”; ②对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0时,f′(x)>0,g′(x)>0, 则x<0时,f′(x)>g′(x); ③函数是偶函数; ④若对∀x∈R,函数f(x)满足f(x+2)=-f(x),则4是该函数的一个周期, 其中所有真命题的序号为 (注:将真命题的序号全部填上) |
|