已知幂函数f(x)=k•xα的图象过点(,),则k+α= . | |
已知集合Sn={X|X=(x1,x2,…,xn),x1∈{0,1},i=1,2,…,n}(n≥2)对于A=(a1,a2,…an,),B=(b1,b2,…bn,)∈Sn,定义A与B的差为A-B=(|a1-b1|,|a2-b2|,…|an-bn|); A与B之间的距离为 (Ⅰ)当n=5时,设A=(0,1,0,0,1),B=(1,1,1,0,0),求d(A,B); (Ⅱ)证明:∀A,B,C∈Sn,有A-B∈Sn,且d(A-C,B-C)=d(A,B); (Ⅲ)证明:∀A,B,C∈Sn,d(A,B),d(A,C),d(B,C)三个数中至少有一个是偶数 |
|
已知椭圆C的左、右焦点坐标分别是,,离心率是,直线y=t椭圆C交与不同的两点M,N,以线段为直径作圆P,圆心为P. (Ⅰ)求椭圆C的方程; (Ⅱ)若圆P与x轴相切,求圆心P的坐标; (Ⅲ)设Q(x,y)是圆P上的动点,当T变化时,求y的最大值. |
|
设定函数,且方程f′(x)-9x=0的两个根分别为1,4. (Ⅰ)当a=3且曲线y=f(x)过原点时,求f(x)的解析式; (Ⅱ)若f(x)在(-∞,+∞)无极值点,求a的取值范围. |
|
如图,正方形ABCD和四边形ACEF所在的平面互相垂直.EF∥AC,AB=,CE=EF=1. (Ⅰ)求证:AF∥平面BDE; (Ⅱ)求证:CF⊥平面BDE. |
|
已知{an}为等差数列,且a3=-6,a6=0. (Ⅰ)求{an}的通项公式; (Ⅱ)若等比数列{bn}满足b1=-8,b2=a1+a2+a3,求数列{bn}的前n项和公式. |
|
已知函数f(x)=2cos2x+sin2x-4cosx. (Ⅰ)求的值; (Ⅱ)求f(x)的最大值和最小值. |
|
(北京卷理14)如图放置的边长为1的正方形PABC沿x轴滚动.设顶点p(x,y)的轨迹方程是y=f(x),则f(x)的最小正周期为 ;y=f(x)在其两个相邻零点间的图象与x轴所围区域的面积为 说明:“正方形PABC沿X轴滚动”包括沿x轴正方向和沿x轴负方向滚动.沿x轴正方向滚动指的是先以顶点A为中心顺时针旋转,当顶点B落在x轴上时,再以顶点B为中心顺时针旋转,如此继续.类似地,正方形PABC可以沿x轴负方向滚动. |
|
已知双曲线的离心率为2,焦点与椭圆的焦点相同,那么双曲线的焦点坐标为 ;渐近线方程为 . | |
从某小学随机抽取100名同学,将他们身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a= .若要从身高在[120,130﹚,[130,140﹚,[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为 . | |