(北京卷理1)集合P={x∈Z|0≤x<3},M={x∈Z|x2<9},则P∩M=( ) A.{1,2} B.{0,1,2} C.{x|0≤x<3} D.{x|0≤x≤3} |
|
数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,总有an,Sn,an2成等差数列. (1)求数列{an}的通项公式; (2)设数列{bn}的前n项和为Tn,且,求证:对任意实数x∈(1,e](e是常数,e=2.71828…)和任意正整数n,总有Tn<2; (3)正数数列{cn}中,an+1=(cn)n+1(n∈N*),求数列{cn}中的最大项. |
|
已知椭圆C中心在原点、焦点在x轴上,椭圆C上的点到焦点的最大值为3,最小值为1. (Ⅰ)求椭圆C的标准方程; (Ⅱ)若直线l:y=kx+m(k≠0)与椭圆交于不同的两点M、N(M、N不是左、右顶点),且以MN为直径的圆经过椭圆的右顶点A.求证:直线l过定点,并求出定点的坐标. |
|
设f(x)=ax3+bx2+cx的极小值为-8,其导函数y=f'(x)的图象经过点,如图所示, (1)求f(x)的解析式; (2)若对x∈[-3,3]都有f(x)≥m2-14m恒成立,求实数m的取值范围. |
|
如图,PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2,又AC=1,∠ACB=120°,AB⊥PC,直线AM与直线PC所成的角为60°. (Ⅰ)求证:平面PAC⊥平面ABC; (Ⅱ)求二面角M-AC-B的大小; (Ⅲ)求三棱锥P-MAC的体积. |
|
某果园要将一批水果用汽车从所在城市甲运至销售商所在城市乙,已知从城市甲到城市乙只有两条公路,且运费由果园承担.若果园恰能在约定日期(×月×日)将水果送到,则销售商一次性支付给果园20万元;若在约定日期前送到,每提前一天销售商将多支付给果园1万元;若在约定日期后送到,每迟到一天销售商将少支付给果园1万元.为保证水果新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送水果,已知下表内的信息: (注:毛利润=销售商支付给果园的费用-运费) (Ⅰ)记汽车走公路1时果园获得的毛利润为ξ(单位:万元),求ξ的分布列和数学期望Eξ; (Ⅱ)假设你是果园的决策者,你选择哪条公路运送水果有可能让果园获得的毛利润更多? |
|
已知向量=(cosx,sinx),=(-cosx,cosx),=(-1,0). (Ⅰ)若,求向量、的夹角; (Ⅱ)当时,求函数的最大值. |
|
如图,圆O1与圆O2相交于A、B,过A作圆O1的切线交圆O2于C,连CB并延长交圆O1于D,连AD,AB=2,BD=3,BC=5,则AD的长为 . |
|
在极坐标系中,点到曲线上的点的距离的最小值为 | |
已知a>0,b>0,c>0,且a+b+c=3,m=a2+b2+c2,则m的最小值为 | |