已知全集U=|1,2,3,4,5|,且A={2,3,4},B={1,2},则A∩(∁∪B)等于( ) A.{2} B.{5} C.{3,4} D.{2,3,4,5} |
|
设双曲线C:=1(a>0)与直线l:x+y=1相交于两个不同的点A、B. (I)求双曲线C的离心率e的取值范围: (II)设直线l与y轴的交点为P,且.求a的值. |
|
如图,已知四棱锥P-ABCD,PB⊥AD侧面PAD为边长等于2的正三角形,底面ABCD为菱形,侧面PAD与底面ABCD所成的二面角为120°. (I)求点P到平面ABCD的距离, (II)求面APB与面CPB所成二面角的大小. |
|
从10位同学(其中6女,4男)中随机选出3位参加测验.每位女同学能通过测验的概率均为,每位男同学能通过测验的概率均为.试求: (I)选出的3位同学中,至少有一位男同学的概率; (II)10位同学中的女同学甲和男同学乙同时被选中且通过测验的概率. |
|
已知f(x)=ax3+3x2-x+1在R上是减函数,求a的取值范围. |
|
求函数的最小正周期、最大值和最小值. |
|
等差数列{an}的前n项和记为Sn.已知a10=30,a20=50. (Ⅰ)求通项an; (Ⅱ)若Sn=242,求n. |
|
已知a、b为不垂直的异面直线,α是一个平面,则a、b在α上的射影有可能是: ①两条平行直线; ②两条互相垂直的直线; ③同一条直线; ④一条直线及其外一点. 在上面结论中,正确结论的编号是 (写出所有正确结论的编号) |
|
由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,∠APB=60°,则动点P的轨迹方程为 . | |
已知等比数列{an}中,a3=3,a10=384,则该数列的通项an= . | |