如果点P在平面区域上,点Q在曲线x2+(y+2)2=1上,那么|PQ|的最小值为( ) A.-1 B.-1 C.2-1 D.-1 |
|
设二元一次不等式组所表示的平面区域为M,使函数y=ax(a>0,a≠1)的图象过区域M的a的取值范围是( ) A.[1,3] B.[2,] C.[2,9] D.[,9] |
|
点P(x,y)在直线4x+3y=0上,且x,y满足-14≤x-y≤7,则点P到坐标原点距离的取值范围是( ) A.[0,5] B.[0,10] C.[5,10] D.[5,15] |
|
满足条件的可行域中共有整点的个数为( ) A.3 B.4 C.5 D.6 |
|
已知函数f(x)=log2(|x-1|+|x-5|-a). (1)当a=2时,求函数f(x)的最小值; (2)当函数f(x)的定义域为R时,求实数a的取值范围. |
|
已知:直线l的参数方程为(t为参数),曲线C的极坐标方程为:ρ2cos2θ=1. (1)求曲线C的普通方程; (2)求直线l被曲线C截得的弦长. |
|
如图所示,已知⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P. (I)求证:AD∥EC; (II)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长. |
|
已知椭圆的离心率,点F为椭圆的右焦点,点A、B分别为椭圆的左、右顶点,点M为椭圆的上顶点,且满足. (1)求椭圆C的方程; (2)是否存在直线l,当直线l交椭圆于P、Q两点时,使点F恰为△PQM的垂心.若存在,求出直线l的方程;若不存在,请说明理由. |
|
已知函数f(x)=lnx-ax(a∈R). (1)求f(x)的单调区间; (2)若a=1,且b≠0,函数,若对任意的x1∈(1,2),总存在x2∈(1,2),使f(x1)=g(x2),求实数b的取值范围. |
|
某网站就观众对2010年春晚小品类节目的喜爱程度进行网上调查,其中持各种态度的人数如下表:
(2)在(1)的条件下,若抽取到的5名不喜欢小品的观众中有2名为女性,现将抽取到的5名不喜欢小品的观众看成一个总体,从中任选两名观众,求至少有一名为女性观众的概率. |
|||||||||