阅读如图所示的程序框图,运行相应的程序,则输出s的值为( ) A.-1 B.0 C.1 D.3 |
|
设变量x,y满足约束条件则目标函数z=4x+2y的最大值为( ) A.12 B.10 C.8 D.2 |
|
i是虚数单位,复数=( ) A.1+2i B.2+4i C.-1-2i D.2-i |
|
已知函数. (Ⅰ)若函数在区间(其中a>0)上存在极值,求实数a的取值范围; (Ⅱ)如果当x≥1时,不等式恒成立,求实数k的取值范围; (Ⅲ)求证[(n+1)!]2>(n+1)•en-2(n∈N*). |
|
若椭圆C的中心在原点,焦点在x轴上,短轴的一个端点与左右焦点F1、F2组成一个正三角形,焦点到椭圆上的点的最短距离为. (Ⅰ)求椭圆C的方程; (Ⅱ)过点F2作直线l与椭圆C交于A、B两点,线段AB的中点为M,求直线MF1的斜率k的取值范围. |
|
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的,,,现在3名工人独立地从中任选一个项目参与建设,选择哪个工程是随机的. (I)求他们选择的项目所属类别互不相同的概率; (II)记X为3人中选择的项目属于基础设施工程的人数,求X的分布列及数学期望. |
|
如图,在三棱锥D-ABC中,△ADC,△ACB均为等腰直角三角形AD=CD=,∠ADC=∠ACB=90°,M为线段AB的中点,侧面ADC⊥底面ABC. (Ⅰ)求证:BC⊥平面ACD; (Ⅱ)求异面直线BD与CM所成角的余弦值; (Ⅲ)求二面角A-CD-M的余弦值. |
|
已知数列{an}的前n项的和为Sn,且有a1=2,3Sn=5an-an-1+3Sn-1(n≥2,n∈N*). (Ⅰ)求数列{an}的通项公式; (Ⅱ)设bn=(2n-1)an,求数列{bn}的前n项的和Tn. |
|
设函数f(x)=cos(2x+)+sin2x. (1)求函数f(x)的最大值和最小正周期. (2)设A,B,C为△ABC的三个内角,若cosB=,f()=-,且C为非钝角,求sinA. |
|
如图,在矩形ABCD中,AB=1,AC=2,O为AC中点,抛物线的一部分在矩形内,点O为抛物线顶点,点B,D在抛物线上,在矩形内随机地放一点,则此点落在阴影部分的概率为 . |
|