已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=AB=1,M是PB的中点. (Ⅰ)证明:面PAD⊥面PCD; (Ⅱ)求AC与PB所成的角; (Ⅲ)求面AMC与面BMC所成二面角的大小. |
|
设函数f(x)=sin(2x+∅)(-π<φ<0),y=f(x)图象的一条对称轴是直线. (I)求φ,并指出y=f(x)由y=sin2x作怎样变换所得. (II)求函数y=f(x)的单调增区间; (III)画出函数y=f(x)在区间[0,π]上的图象. |
|
在正方体ABCD-A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则 ①四边形BFD′E一定是平行四边形; ②四边形BFD′E有可能是正方形; ③四边形BFD′E在底面ABCD内的投影一定是正方形; ④平面BFD′E有可能垂直于平面BB′D. 以上结论正确的为 .(写出所有正确结论的编号) |
|
从6名男生和4名女生中,选出3名代表,要求至少包含1名女生,则不同的选法共有 种. | |
的展开式中的常数项为 . | |
若正整数m满足10m-1<2512<10m,则m= .(lg2≈0.3010) | |
点O是三角形ABC所在平面内的一点,满足,则点O是△ABC的( ) A.三个内角的角平分线的交点 B.三条边的垂直平分线的交点 C.三条中线的交点 D.三条高的交点 |
|
在△ABC中,已知tan=sinC,给出以下四个论断: ①tanA•cotB=1, ②1<sinA+sinB≤, ③sin2A+cos2B=1, ④cos2A+cos2B=sin2C, 其中正确的是( ) A.①③ B.②④ C.①④ D.②③ |
|
在直角坐标平面上,不等式组所表示的平面区域面积为( ) A. B. C. D.3 |
|
设0<a<1,函数f(x)=loga(a2x-2ax-2),则使f(x)<0的x的取值范围是( ) A.(-∞,0) B.(0,+∞) C.(-∞,loga3) D.(loga3,+∞) |
|