相关试题
当前位置:首页 > 高中数学试题
已知函数f(x)=ax2-x-c,且f(x)>0的解集为(-2,1),则函数y=f(-x)的图象为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
“a+c>b+d”是“a>b且c>d”的( )
A.必要不充分条件
B.充分不必要条件
C.充分必要条件
D.既不充分也不必要条件
若不等式组manfen5.com 满分网,所表示的平面区域被直线y=kx+4分成面积相等的两部分,则k的值为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.-manfen5.com 满分网
D.-manfen5.com 满分网
设x,y满足约束条件manfen5.com 满分网,若目标函数z=ax+by(a>0,b>0)的值是最大值为12,则manfen5.com 满分网的最小值为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.4
已知函数manfen5.com 满分网(x>0).
(Ⅰ)若f(x)在[1,+∞)上单调递增,求实数a的取值范围;
(Ⅱ)若定义在区间D上的函数y=g(x)对于区间D上的任意两个值x1、x2,总有不等式manfen5.com 满分网成立,则称函数y=g(x)为区间D上的“凸函数”.试证当a≥0时,f(x)为“凸函数”.
过点P(2,4)的直线l与双曲线C:manfen5.com 满分网交于A、B两点,且manfen5.com 满分网
(Ⅰ)求直线l的方程;
(Ⅱ)过线段AB上的点作曲线y=x2+8x+12的切线,求切点横坐标的取值范围;
(Ⅲ)若过P的另一直线l1与双曲线交于C、D两点,且manfen5.com 满分网,则∠ACD=∠ABD一定成立吗?证明你的结论.
设数列{an}的首项a1=1,前n项和Sn满足关系式tSn-(t+1)Sn-1=t(t>0,n∈N*,n≥2).
(Ⅰ)求证:数列{an}是等比数列;
(Ⅱ)设数列{an}的公比为f(t),作数列{bn},使b1=1,manfen5.com 满分网(n∈N*,n≥2),求数列{bn}的通项公式;
(Ⅲ)数列{bn}满足条件(Ⅱ),求和:b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1
如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC=1,E、F分别是AB、PB的中点.
(Ⅰ)求证:EF⊥CD;
(Ⅱ)求二面角F-DE-B的大小;
(Ⅲ)在平面PAD内求一点G,使GF⊥平面PCB,并证明你的结论.

manfen5.com 满分网
某职业联赛的总决赛在甲、乙两队之间角逐,采用七场四胜制,即有一队胜四场,则此队获胜,且比赛结束.在每场比赛中,甲队获胜的概率是manfen5.com 满分网,乙队获胜的概率是manfen5.com 满分网,根据以往资料统计,每场比赛组织者可获门票收入为30万元,两队决出胜负后,问:
(Ⅰ)组织者在总决赛中获门票收入为120万元的概率是多少?
(Ⅱ)设ξ为组织者在总决赛中获得的门票收入数,求ξ的分布列.
已知函数manfen5.com 满分网(a∈R,a为常数).
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)若f(x)在manfen5.com 满分网上的最大值与最小值之和为manfen5.com 满分网,求a的值.
共1028964条记录 当前(88306/102897) 首页 上一页 88301 88302 88303 88304 88305 88306 88307 88308 88309 88310 88311 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.