若函数f(x)=ax3-3x在(-1,1)上单调递减,则实数a的取值范围是( ) A.a<1 B.a≤1 C.0<a<1 D.0<a≤1 |
|
已知函数f(x)的导数为f′(x)=4x3-4x,且f(x)的图象过点(0,-5),当函数f(x)取得极大值-5时,x的值应为( ) A.-1 B.0 C.1 D.±1 |
|
函数f(x)=(x-3)ex的单调递增区间是( ) A.(-∞,2) B.(0,3) C.(1,4) D.(2,+∞) |
|
对于正整数k,用g(k)表示k的最大奇因数,如:g(1)=1,g(2)=1,g(3)=3,….记an=g(1)+g(2)+g(3)+…+g(2n),其中n是正整数. (I)写出a1,a2,a3,并归纳猜想an与an-1(n≥2,n∈N)的关系式; (II)证明(I)的结论; (Ⅲ)求an的表达式. |
|
在直角坐标平面内,已知点A(2,0),B(-2,0),P是平面内一动点,直线PA、PB斜率之积为-. (Ⅰ)求动点P的轨迹C的方程; (Ⅱ)过点(,0)作直线l与轨迹C交于E、F两点,线段EF的中点为M,求直线MA的斜率k的取值范围. |
|
如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,M为线段AB的中点.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2所示. (Ⅰ)求证:BC⊥平面ACD; (Ⅱ)求二面角A-CD-M的余弦值. |
|
某项竞赛分为初赛、复赛、决赛三个阶段进行,每个阶段选手要回答一个问题.规定正确回答问题者进入下一阶段竞赛,否则即遭淘汰.已知某选手通过初赛、复赛、决赛的概率分别是,,,且各阶段通过与否相互独立. (Ⅰ)求该选手在复赛阶段被淘汰的概率; (Ⅱ)设该选手在竞赛中回答问题的个数为ξ,求ξ的数学期望和方差. |
|
设集合,B={x|(x-m+1)(x-2m-1)<0}. (1)求A∩Z; (2)若A⊇B,求m的取值范围. |
|
在△ABC中,A、B为锐角,角A、B、C所对的边分别为a、b、c,且cos2A=,sinB=. (1)求A+B的值; (2)若a-b=-1,求a、b、c的值. |
|
已知动点p(x,y)在椭圆=1上,若A点坐标为(3,0)=1且=0,则||的最小值是 | |