如图,在矩形ABCD中,AB=6米,BC=8米,动点P以2米/秒的速度从点A出发,沿AC向点C移动,同时动点Q以1米/秒的速度从点C出发,沿CB向点B移动,设P、Q两点移动t秒(0<t<5)后,四边形ABQP的面积为S米2. (1)求面积S与时间t的关系式; (2)在P、Q两点移动的过程中,四边形ABQP与△CPQ的面积能否相等?若能,求出此时点P的位置;若不能,请说明理由. |
|
九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.请解答以下问题:
(2)若该小区用水量不超过15t的家庭占被调查家庭总数的百分比; (3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户? |
||||||||||||||||||||||
①如图1,在每个小方格都是边长为1个单位长度的正方形方格纸中有△OAB,请将△OAB绕O顺时针旋转90°,画出旋转后的△OA′B′. ②折纸:有一张矩形纸片ABCD如图2,要将点D沿某条直线翻转180°,恰好落在BC边上的点D′处,请在图中作出该直线. |
|
已知:平行四边形ABCD中,E、F是BC、AB的中点,DE、DF分别交AB、CB的延长线于H、G; (1)求证:BH=AB; (2)若四边形ABCD为菱形,试判断∠G与∠H的大小,并证明你的结论. |
|
如图,我边防哨所A测得一走私船在A的西北方向B处由南向北正以每小时10海里的速度逃跑,我缉私艇迅速朝A的西偏北60°的方向出水拦截,2小时后终于在B地正北方向M处拦截住,试求缉私船的速度.(参考数据:) |
|
观察下列等式: 第1个等式:a1==×(1-); 第2个等式:a2==×(-); 第3个等式:a3==×(-); 第4个等式:a4==×(-); … 请解答下列问题: (1)按以上规律列出第5个等式:a5=______; (2)用含有n的代数式表示第n个等式:an=______=______(n为正整数); (3)求a1+a2+a3+a4+…+a100的值. |
|
如图,E、F是平行四边形ABCD对角线AC上两点,BE∥DF,求证:AF=CE. |
|
解不等式组:并写出不等式组的整数解. |
|
如图,△ABC中,AB=BC=CA=8.一电子跳蚤开始时在BC边的P处,BP=3.跳蚤第一步从P跳到AC边的P1(第1次落点)处,且CP1=CP;第二步从P1跳到AB边的P2(第2次落点)处,且AP2=AP1;第三步从P2跳到BC边的P3(第3次落点)处,且BP3=BP2;…;跳蚤按照上述规则一直跳下去,第n次落点为Pn(n为正整数),则点P2012与点P2013之间的距离为 . |
|
点E、F分别在一张长方形纸条ABCD的边AD、BC上,将这张纸条沿着直线EF对折后如图,BF与DE交于点G,如果∠BGD=30°,长方形纸条的宽AB=2cm,那么这张纸条对折后的重叠部分的面积S△GEF= cm2. |
|