若sin2θ<0,则角θ是( ) A.第一或第二象限角 B.第二或第三象限角 C.第三或第四象限角 D.第二或第四象限角 |
|
已知集合A={x|x>1},B={x|x<m},且A∪B=R,那么m的值可以是( ) A.-1 B.0 C.1 D.2 |
|
已知函数f(x)=xlnx,g(x)=-x2+ax-3,其中a为实数. (1)设t>0为常数,求函数f(x)在区间[t,t+2]上的最小值; (2)若对一切x∈(0,+∞),不等式2f(x)≥g(x)恒成立,求实数a的取值范围. |
|
已知椭圆的方程为=1(a>b>0),它的一个焦点与抛物线y2=8x的焦点重合,离心率e=,过椭圆的右焦点F作与坐标轴不垂直的直线l,交椭圆于A、B两点. (1)求椭圆的标准方程; (2)设点M(1,0),且,求直线l的方程. |
|
正△ABC的边长为4,CD是AB边上的高,E、F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A-DC-B (Ⅰ)试判断直线AB与平面DEF的位置关系,并说明理由; (Ⅱ)求二面角E-DF-C的余弦值; (Ⅲ)在线段BC上是否存在一点P,使AP⊥DE?证明你的结论. |
|
已知圆C:x2+y2+x-6y+m=0与直线l:x+2y-3=0. (1)若直线l与圆C没有公共点,求m的取值范围; (2)若直线l与圆C相交于P、Q两点,O为原点,且OP⊥OQ,求实数m的值. |
|
设已知p:(4x-3)2≤1;q:(x-a)(x-a-1)≤0;若¬p是¬q的必要不充分条件求实数a的取值范围. |
|
以下四个关于圆锥曲线的命题中: ①设A、B为两个定点,k为非零常数,,则动点P的轨迹为双曲线; ②以过抛物线的焦点的一条弦AB为直径作圆,则该圆与抛物线的准线相切; ③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率; ④双曲线有相同的焦点. 其中真命题的序号为 (写出所有真命题的序号) |
|
已知平面内一点P∈{(x,y)|(x-2cosα)2+(y-2sinα)2=16,α∈R},则满足条件的点P在平面内所组成的图形的面积是 . | |
在椭圆内,有一内接三角形ABC,它的一边BC与长轴重合,点A在椭圆上运动,则△ABC的重心的轨迹方程为 . | |