直线的倾斜角的大小是( ) A.30° B.60° C.150° D.120° |
|
如果函数y=f(x)的图象如图,那么导函数y=f′(x)的图象可能是( ) A. B. C. D. |
|
设函数y=f(x)可导,则等于( ) A.f'(1) B.3f'(1) C. D.以上都不对 |
|
全称命题:∀x∈R,x2≥2的否定是( ) A.:∀x∈R,x2<2 B.∃x∈R,x2≥2 C.∃x∈R,x2≤2 D.∃x∈R,x2<2 |
|
已知函数f(x)=,其中a>0. (Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程; (Ⅱ)若在区间上,f(x)>0恒成立,求a的取值范围. |
|
在海岸A处,发现北偏东45°方向,距离Anmile的B处有一艘走私船,在A处北偏西75°的方向,距离A2nmile的C处的缉私船奉命以nmile/h的速度追截走私船,此时,走私船正以10nmile/h的速度从B处向北偏东30°方向逃窜. (1)求线段BC的长度; (2)求∠ACB的大小; (参考数值:) (3)问缉私船沿北偏西多少度的方向能最快追上走私船? |
|
如图,在梯形ABCD中,AB∥CD,E,F是线段AB上的两点,且DE⊥AB,CF⊥AB,AB=12,AD=5,BC=4,DE=4.现将△ADE,△CFB分别沿DE,CF折起,使A,B两点重合与点G,得到多面体CDEFG. (1)求证:平面DEG⊥平面CFG; (2)求多面体CDEFG的体积. |
|
已知函数,x∈R,且 (1)求A的值; (2)设,,,求cos(α+β)的值. |
|
某加工厂用某原料由甲车间加工出A产品,由乙车间加工出B产品.甲车间加工一箱原料需耗费工时10小时,可加工出7千克A产品,每千克A产品获利40元.乙车间加工一箱原料需耗费工时6小时,可加工出4千克B产品,每千克B产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙车间耗费工时总和不得超过480小时,那么要满足上述的要求,并且获利最大,甲、乙两车间应当各生产多少箱? |
|
已知函数. (Ⅰ)求f(x)的最小正周期: (Ⅱ)求f(x)在区间上的最大值和最小值. |
|