已知函数f(x)=x3+x2-ax-a,x∈R,其中a>0. (1)求函数f(x)的单调区间; (2)若函数f(x)在区间(-2,0)内恰有两个零点,求a的取值范围; (3)当a=1时,设函数f(x)在区间[t,t+3]上的最大值为M(t),最小值为m(t).记g(t)=M(t)-m(t),求函数g(t)在区间[-3,-1]上的最小值. |
|
如图,F1、F2分别是椭圆C:(a>b>0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60°. (Ⅰ)求椭圆C的离心率; (Ⅱ)已知△AF1B的面积为40,求a,b 的值. |
|
如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD. (Ⅰ)求证:BE=DE; (Ⅱ)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC. |
|
某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查. (1)求应从小学、中学、大学中分别抽取的学校数目; (2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析. (ⅰ)列出所有可能的抽取结果; (ⅱ)求抽取的2所学校均为小学的概率. |
|
已知函数f(x)=. (1)求f(x)的定义域及最小正周期; (2)求f(x)的单调递减区间. |
|
已知等差数列{an}满足:a5=9,a2+a6=14. (1)求{an}的通项公式; (2)若,求数列{bn}的前n项和Sn. |
|
(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分) A.(不等式选做题)不等式|x+1|-|x-3|≥0的解集是 . B.(几何证明选做题) 如图,⊙O的直径AB=6cm,P是延长线上的一点,过点P作⊙O的切线,切点为C,连接AC,若∠CAP=30°,则PC= . C.(极坐标系与参数方程选做题)在极坐标系中,已知曲线ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,则实数a的值为 . |
|
设x,y满足约束条件:;则z=x-2y的取值范围为 . | |
已知x>0,y>0,若+>m2+2m恒成立,则实数m的取值范围是 . | |
在△ABC中,,则BC的长度为 . | |