如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA⊥PD,底面ABCD是直角梯形,其中BC∥AD,∠BAD=90°,AD=3BC,O是AD上一点. (Ⅰ)若CD∥平面PBO,试指出点O的位置; (Ⅱ)求证:平面PAB⊥平面PCD.
|
|
已知函数f(x)=sin2x-cos2x-,x∈R. (1)求函数f(x)的最小值和最小正周期; (2)设△ABC的内角A,B,C的对边分别为a,b,c且c=,f(C)=0,若sinB=2sinA,求a,b的值.
|
|
在平面直角坐标系x0y中,抛物线y2=2x的焦点为F,若M是抛物线上的动点,则的最大值为 .
|
|
将一个长宽分别a,b(0<a<b)的长方形的四个角切去四个相同的正方形,然后折成一个无盖的长方体形的盒子,若这个长方体的外接球的体积存在最小值,则的取值范围为 .
|
|
已知等比数列{an}为递增数列,且,则数列an的通项公式an= .
|
|
已知变量a,θ∈R,则(a-2cosθ)2+(a-5-2sinθ)2的最小值为 .
|
|
在样本的频率分布直方图中,共有9个小长方形,若第一个长方形的面积为0.02,前五个与后五个长方形的面积分别成等差数列且公差互为相反数,若样本容量为160,则中间一组(即第五组)的频数为 .
|
|