设函数. (I)求函数f(x)的最小正周期和最大值; (Ⅱ)△ABC的内角A.B、C的对边分别为a、b、c,c=3,,若向量=(1,sinA)与=(2,sinB)共线,求a,b的值. |
|
向量a=(2,o),b=(x,y),若b与b一a的夹角等于,则|b|的最大值为 . | |
将A、B、C、D四名学生分到三个不同的班,每个班至少分到一名学生,且A、B两名学生不能分到同一个班,则不同分法的种数为 . | |
在数列{an}中,Sn为其前n项和,a1=1,a2=2,an+2-an=1+(-1)n,则S20= . | |
已知实数x,y满足条件,则目标函数z=2x-y的最大值是 . | |
已知以T=4为周期的函数,其中m>0,若方程3f(x)=x恰有5个实数解,则m的取值范围为( ) A.(,) B.(,) C.(,) D.(,) |
|
在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲.乙.丙.丁四地新增疑似病例数据,一定符合该标志的是( ) A.甲地:总体均值为3,中位数为4 B.乙地:总体均值为1,总体方差大于0 C.丙地:中位数为2,众数为3 D.丁地:总体均值为2,总体方差为3 |
|
有四个关于三角函数的命题: P1:∃x∈R,sin2+cos2=; P2:∃x、y∈R,sin(x-y)=sinx-siny; P3:∀x∈[0,π],=sinx; P4:sinx=cosy⇒x+y=. 其中假命题的是( ) A.P1,P4 B.P2,P4 C.P1,P3 D.P2,P4 |
|
函数f(x)满足f(0)=0,其导函数f′(x)的图象如图,则f(x)的图象与x轴所围成的封闭图形的面积为( ) A. B. C.2 D. |
|
已知F1、F2为双曲线C:x2-y2=1的左、右焦点,点p在C上,∠F1pF2=60°,则P到x轴的距离为( ) A. B. C. D. |
|