已知数列{an}的前n项和为Sn,且Sn=2an-2,(n=1,2,3…)数列{bn}中,b1=1,点P(bn,bn+1)在直线x-y+2=0上. (1)求数列{an}和{bn}的通项公式; (2); (3)记Tn=a1b1+a2b2+a3b3+…+anbn,求Tn. |
|
某市旅游部门开发一种旅游纪念品,每件产品的成本是15元,销售价是20元,月平均销售a件,通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明,如果产品的销售价提高的百分率为x(0<x<1),那么月平均销售量减少的百分率为x2.记改进工艺后,旅游部门销售该纪念品的月平均利润是y(元). (Ⅰ)写出y与x的函数关系式; (Ⅱ)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大. |
|
已知向量,设函数. (1)求f(x)的最小正周期与单调递减区间 (2)在△ABC中,a、b、c分别是角A、B、C的对边,若f(A)=4,b=1,△ABC的面积为,求a的值. |
|
已知命题p:在x∈[1,2]内,不等式x2+ax-2>0恒成立;命题q:函数是区间[1,+∞)上的减函数.若命题“p∀q”是真命题,求实数a的取值范围. |
|
已知cosα=,cos(α-β)=,且0<β<α<, (Ⅰ)求tan2α的值; (Ⅱ)求β. |
|
对于函数f(x)=x|x|+px+q,现给出四个命题: ①q=0时,f(x)为奇函数 ②y=f(x)的图象关于(0,q)对称 ③p=0,q>0时,方程f(x)=0有且只有一个实数根 ④方程f(x)=0至多有两个实数根 其中正确命题的序号为 . |
|
观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10= . | |
凸函数的性质定理为:如果函数f(x)在区间D上是凸函数,则对于区间D内的任意x1,x2,…,xn,有≤f(),已知函数y=sinx在区间(0,π)上是凸函数,则在△ABC中,sinA+sinB+sinC的最大值为 | |
已知a>0,b>0,a+b=2,则的最小值是 . | |
设f(x)和g(x)是定义在同一区间[a,b]上的两个函数,若对任意的x∈[a,b],都有|f(x)-g(x)|≤1,则称f(x)和g(x)在[a,b]上是“密切函数”,[a,b]称为“密切区间”,设f(x)=x2-3x+4与g(x)=2x-3在[a,b]上是“密切函数”,则它的“密切区间”可以是( ) A.[1,4] B.[2,3] C.[3,4] D.[2,4] |
|