函数f(x)=x2-bx+a的图象如图所示,则函数g(x)=lnx+f′(x)的零点所在的区间是( ) A.(,) B.(,1) C.(1,2) D.(2,3) |
|
已知函数f(x)满足f(x)=f(π-x),且当x∈(-,)时,f(x)=x+sinx,则( ) A.f(1)<f(2)<f(3) B.f(2)<f(3)<f(1) C.f(3)<f(2)<f(1) D.f(3)<f(1)<f(2) |
|
若函数f(x)=(a2-2a-3)x2+(a-3)x+1的定义域和值域都为R,则a的取值范围是( ) A.a=-1或3 B.a=-1 C.a>3或a<-1 D.-1<a<3 |
|
已知集合P={(x,y)|y=k},Q={(x,y)|y=ax+1},且P∩Q=∅,那么k的取值范围是( ) A.(-∞,1) B.(-∞,1] C.(1,+∞) D.(-∞,+∞) |
|
若方程2ax2-x-1=0在(0,1)内恰有一解,则a的取值范围是( ) A.a<-1 B.a>1 C.-1<a<1 D.0≤a<1 |
|
若m>0且m≠1,n>0,则“logmn<0”是“(m-1)(n-1)<0”的( ) A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 |
|
函数的定义域是( ) A.{x|x<0} B.{x|x>0} C.{x|x<0且x≠-1} D.{x|x≠-0且x≠-1} |
|
设a∈,则使函数y=xa的定义域是R,且为奇函数的所有a的值是( ) A.1,3 B.-1,1 C.-1,3 D.-1,1,3 |
|
已知f(x)=x2+C,且f[f(x)]=f(x2+1) (1)设g(x)=f[(x)],求g(x)的解析式. (2)设ϑ(x)=g(x)-λf(x),试问是否存在实数λ,使ϑ(x)在(-∞,-1)上是减函数,并且在(-1,0)上是增函数. |
|
如图所示:图1是定义在R上的二次函数f(x)的部分图象,图2是函数g(x)=loga(x+b)的部分图象. (1)分别求出函数f(x)和g(x)的解析式; (2)如果函数y=g(f(x))在区间[1,m)上单调递减,求m的取值范围. |
|