已知log7[log3(log2x)]=0,那么等于( ) A. B. C. D. |
|
设集合等于( ) A.{x|x≤1} B.{x|1≤x<2} C.{x|0<x≤1} D.{x|0<x<1} |
|
已知函数f(x)=4x3+3tx2-6t2x+t-1,其中t>0. (1)求f(x)的单调区间; (2)证明:对任意的t∈(0,+∞),f(x)在区间(0,1)内均存在零点. |
|
设0<a<1,集合A={x∈R|x>0},B={x∈R|2x2-3(1+a)x+6a>0},D=A∩B. (1)求集合D(用区间表示) (2)求函数f(x)=2x3-3(1+a)x2+6ax在D内的极值点. |
|
某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式,其中3<x<6,a为常数,已知销售价格为5元/千克时,每日可售出该商品11千克. (Ⅰ)求a的值 (Ⅱ)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大. |
|
如图所示的几何体是将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右水平平移后得到的,A,A′,B,B′分别为的中点,O1,O1′,O2,O2′分别为CD,C′D′,DE,D′E′的中点. (1)证明:O1′,A′,O2,B四点共面; (2)设G为A A′中点,延长A′O1′到H′,使得O1′H′=A′O1′.证明:BO2′⊥平面H′B′G |
|
在某次测验中,有6位同学的平均成绩为75分.用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:
(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率. |
|||||||||||||
已知函数f(x)=2sin(x-),x∈R (1)求f()的值; (2)设α,β∈[0,],f(3α+)=,f(3β+2π)=,求cos(α+β)的值. |
|
(几何证明选讲选做题)如图,圆O中的半径为1,A、B、C是圆周上的三点,满足∠ABC=30°,过点A作圆O的切线与 O C 的延长线交于点P,则图PA= . |
|
(坐标系与参数方程选做题)在平面直角坐标系xOy中,曲线C1与C2的参数方程分别为(t为参数)和(θ为参数),则曲线C1与C2的交点坐标为 . | |