下列不等式一定成立的是( ) A.lg(x2+)>lgx(x>0) B.sinx+≥2(x≠kx,k∈Z) C.x2+1≥2|x|(x∈R) D.(x∈R) |
|
==( ) A. B. C.1 D.0 |
|
已知圆C:x2+y2-4x=0,l为过点P(3,0)的直线,则( ) A.l与C相交 B.l与C相切 C.l与C相离 D.以上三个选项均有可能 |
|
若向量,向量,则=( ) A.(-2,-4) B.(3,4) C.(6,10) D.(-6,-10) |
|
复数=( ) A.1+2i B.1+i C.1-2i D.1-i |
|
已知椭圆C:(a>b>0)的左右焦点分别是F1(-c,0),F2(c,0),直线l:x=my+c与椭圆C交于两点M,N且当时,M是椭圆C的上顶点,且△MF1F2的周长为6. (1)求椭圆C的方程; (2)设椭圆C的左顶点为A,直线AM,AN与直线:x=4分别相交于点P,Q,问当m变化时,以线段PQ为直径的圆被x轴截得的弦长是否为定值?若是,求出这个定值,若不是,说明理由. |
|
设函数在x=1处取得极值. (Ⅰ)求a与b满足的关系式; (Ⅱ)若a>1,求函数f(x)的单调区间; (Ⅲ)若a>3,函数g(x)=a2x2+3,若存在m1,,使得|f(m1)-g(m2)|<9成立,求a的取值范围. |
|
等差数列{an}的各项均为正数,a1=3,前n项和为Sn,{bn}为等比数列,b1=1,且b2S2=64,b3S3=960. (1)求an与bn; (2)求和:. |
|
如图,在四棱锥E-ABCD中,AB⊥平面BCE,CD⊥平面BCE,AB=BC=CE=2CD=2,∠BCE=120°. (I)求证:平面ADE⊥平面ABE; (II)求二面角A-EB-D的大小的余弦值. |
|
某市医疗保险实行定点医疗制度,按照“就近就医、方便管理”的原则,参加保险人员可自主选择四家医疗保险定点医院和一家社区医院作为本人就诊的医疗机构.若甲、乙、丙、丁4名参加保险人员所在地区附近有A,B,C三家社区医院,并且他们的选择是相互独立的. (Ⅰ)求甲、乙两人都选择A社区医院的概率; (Ⅱ)求甲、乙两人不选择同一家社区医院的概率; (Ⅲ)设4名参加保险人员中选择A社区医院的人数为ξ,求ξ的分布列和数学期望. |
|