设变量x,y满足约束条件,则目标函数z=2x+3y+1的最大值为( ) A.11 B.10 C.9 D.8.5 |
|
若函数f(x)=sinωx(ω>0)在区间上单调递增,在区间上单调递减,则ω=( ) A. B. C.2 D.3 |
|
已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是( ) A.若a+b+c≠3,则a2+b2+c2<3 B.若a+b+c=3,则a2+b2+c2<3 C.若a+b+c≠3,则a2+b2+c2≥3 D.若a2+b2+c2≥3,则a+b+c=3 |
|
曲线y=x2+11在点P(1,12)处的切线与y轴交点的纵坐标是( ) A.-9 B.9 C.10 D.15 |
|
若点(a,9)在函数y=3x的图象上,则tan的值为( ) A.0 B. C.1 D. |
|
复数(i为虚数单位)在复平面内对应的点所在象限为( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 |
|
设集合 M={x|(x+3)(x-2)<0},N={x|1≤x≤3},则M∩N=( ) A.[1,2) B.[1,2] C.(2,3] D.[2,3] |
|
已知函数,a为正常数. (1)若f(x)=lnx+φ(x),且,求函数f(x)的单调增区间; (2)若g(x)=|lnx|+φ(x),且对任意x1,x2∈(0,2],x1≠x2,都有,求a的取值范围. |
|
在△ABC中,角A,B,C的对边分别为a,b,c.已知A=,bsin(+C)-csin(+B)=a, (1)求证:B-C= (2)若a=,求△ABC的面积. |
|
设二次函数f(x)=ax2+bx+c在区间[-2,2]上的最大值、最小值分别是M、m,集合A={x|f(x)=x}. (1)若A={1,2},且f(0)=2,求M和m的值; (2)若A={1},且a≥1,记g(a)=M+m,求g(a)的最小值. |
|