相关试题
当前位置:首页 > 高中数学试题
直线l交椭圆4x2+5y2=80于M、N两点,椭圆的上顶点为B点,若△BMN的重心恰好落在椭圆的右焦点上,则直线l的方程是( )
A.5x+6y-28=0
B.5x-6y-28=0
C.6x+5y-28=0
D.6x-5y-28=0
若双曲线manfen5.com 满分网的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( )
A.manfen5.com 满分网
B.5
C.manfen5.com 满分网
D.2
已知圆的方程为x2+y2-2x+6y+8=0,那么该圆的一条直径所在直线的方程为( )
A.2x-y+1=0
B.2x-y-1=0
C.2x+y+1=0
D.2x+y-1=0
“a=2”是“直线2x+ay-1=0与直线ax+2y-2=0平行”的( )
A.充要条件
B.充分不必要条件
C.必要不充分条件
D.既不充分也不必要条件
设{an}和{bn}均为无穷数列.
(1)若{an}和{bn}均为等比数列,试研究:{an+bn}和{anbn}是否是等比数列?请证明你的结论;若是等比数列,请写出其前n项和公式.
(2)请类比(1),针对等差数列提出相应的真命题(不必证明),并写出相应的等差数列的前n项和公式(用首项与公差表示).
椭圆manfen5.com 满分网的左、右焦点分别是F1,F2,过F1的直线l与椭圆C相交于A,B两点,且|AF2|,|AB|,|BF2|成等差数列.
(1)求证:b=c;
(2)设点p(0,-1)在线段AB的垂直平分线上,求椭圆C的方程.
证明下面两个命题:
(1)在所有周长相等的矩形中,只有正方形的面积最大;
(2)余弦定理:如图,在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,则a2=b2+c2-2bccosA.

manfen5.com 满分网
已知△ABC的面积为1,且满足manfen5.com 满分网,设manfen5.com 满分网manfen5.com 满分网的夹角为θ.
(1)求θ的取值范围;
(2)求函数manfen5.com 满分网的最小值.
已知函数f(x)=2|x-2|+ax(x∈R)有最小值.
(1)求实常数a的取值范围;
(2)设g(x)为定义在R上的奇函数,且当x<0时,g(x)=f(x),求g(x)的解析式.
在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”.类似的,我们在复数集C上也可以定义一个称为“序”的关系,记为“>”.定义如下:对于任意两个复数z1=a1+b1i,z2=a2+b2i(a1,a2,b1,b2∈R),z1>z2当且仅当“a1>a2”或“a1=a2且b1>b2”.
按上述定义的关系“>”,给出如下四个命题:
①1>i>0;
②若z1>z2,z2>z3,则z1>z3
③若z1>z2,则,对于任意z∈C,z1+z>z2+z;
④对于复数z>0,若z1>z2,则zz1>zz2
其中所有真命题的个数为( )>>>
A.1
B.2
C.3
D.4
共1028964条记录 当前(66133/102897) 首页 上一页 66128 66129 66130 66131 66132 66133 66134 66135 66136 66137 66138 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.