相关试题
当前位置:首页 > 高中数学试题
下列命题之中,U为全集时,不正确的是( )
A.若A∩B=φ,则(∁UA)∪(∁UB)=U
B.若A∩B=φ,则A=φ或B=φ
C.若A∪B=U,则(∁UA)∩(∁UB)=φ
D.若A∪B=φ,则A=B=φ
已知奇函数f(x)=ax3+bx2+cx+d满足:f'(1)=0,manfen5.com 满分网
(Ⅰ)求f(x)的解析式;
(Ⅱ)当x∈[-1,1]时,证明:函数图象上任意两点处的切线不可能互相垂直;
(Ⅲ)若对于任意实数α和β,不等式|f(2sinα)-f(2sinβ)|≤m恒成立,求m的最小值.
下图中的三角形称为谢宾斯基(Sierpinski)三角形.这些三角形中的着色与未着色的三角形的个数具有一定的规律.按图(1)、(2)、(3)、(4)四个三角形的规律继续构建三角形,设第n个三角形中包含f(n)个未着色三角形.
manfen5.com 满分网
(Ⅰ)求出f(5)的值;
(Ⅱ)写出f(n+1)与f(n)之间的关系式,并由此求出f(n)的表达式;
(Ⅲ)设manfen5.com 满分网,数列{an}的前n项和为Sn,求证:manfen5.com 满分网
设△ABC的外心为O,重心为G,取点H,使manfen5.com 满分网.求证:
(Ⅰ)点H为△ABC的垂心;
(Ⅱ)△ABC的外心O、重心G、垂心H在同一条直线上.

manfen5.com 满分网
已知数列{an}满足manfen5.com 满分网
(I)求数列{an}的通项公式;
(II)求数列{an}的前n项和Sn
(Ⅰ)已知a,b∈R且a>0,b>0,求证:manfen5.com 满分网
(Ⅱ)求函数manfen5.com 满分网(0<x<1)的最小值.
已知向量manfen5.com 满分网,函数f(x)的图象关于直线manfen5.com 满分网对称,且manfen5.com 满分网
(Ⅰ)求f(x)的最小正周期及单调递增区间;
(Ⅱ)函数的图象经过怎样的平移变换能使所得图象对应的函数为偶函数?
关于非零平面向量manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网.有下列命题:
①若manfen5.com 满分网=(1,k),manfen5.com 满分网=(-2,6),manfen5.com 满分网∥b,则k=-3;  ②若|manfen5.com 满分网|=|manfen5.com 满分网|=|manfen5.com 满分网-manfen5.com 满分网|,则manfen5.com 满分网manfen5.com 满分网+manfen5.com 满分网的夹角为60°;
③|manfen5.com 满分网+manfen5.com 满分网|=|manfen5.com 满分网|+|manfen5.com 满分网|⇔manfen5.com 满分网manfen5.com 满分网的方向相同;    ④|manfen5.com 满分网|+|manfen5.com 满分网|>|manfen5.com 满分网-manfen5.com 满分网|⇔manfen5.com 满分网manfen5.com 满分网的夹角为锐角;
⑤若manfen5.com 满分网=(1,-3),manfen5.com 满分网=(-2,4),manfen5.com 满分网=(4,-6),则表示向量4manfen5.com 满分网,3manfen5.com 满分网-2manfen5.com 满分网manfen5.com 满分网的有向线段首尾连接能构成三角形.
其中真命题的序号是    (将所有真命题的序号都填上).
直线y=kx与曲线y=e|lnx|-|x-2|有3个公共点时,实数k的取值范围是   
设g(x) 是定义在R 上,以1为周期的函数,若函数f(x)=x+g(x) 在区间[0,1]上的值域为[-2,5],则f(x) 在区间[0,3]上的值域为   
共1028964条记录 当前(66156/102897) 首页 上一页 66151 66152 66153 66154 66155 66156 66157 66158 66159 66160 66161 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.