函数的最大值是( ) A. B. C. D. |
|
如果数列{an}是等差数列,则( ) A.a1+a8>a4+a5 B.a1+a8=a4+a5 C.a1+a8<a4+a5 D.a1a8=a4a5 |
|
函数的反函数是( ) A. B. C. D. |
|
已知集合M={0,1,2},N={x|x=2a,a∈M},则集合M∩N=( ) A.{0} B.{0,1} C.{1,2} D.{0,2} |
|
如图,l1、l2是通过某城市开发区中心O的两条南北和东西走向的街道,连接M、N两地之间的铁路线是圆心在l2上的一段圆弧.若点M在点O正北方向,且|MO|=3km,点N到l1、l2的距离分别为4km和5km. (1)建立适当坐标系,求铁路线所在圆弧的方程; (2)若该城市的某中学拟在点O正东方向选址建分校,考虑环境问题,要求校址到点O的距离大于4km,并且铁路线上任意一点到校址的距离不能少于,求该校址距点O的最近距离(注:校址视为一个点). |
|
若椭圆过点(-3,2)离心率为,⊙O的圆心为原点,直径为椭圆的短轴,⊙M的方程为(x-8)2+(y-6)2=4,过⊙M上任一点P作⊙的切线PA、PB切点为A、B. (1)求椭圆的方程; (2)若直线PA与⊙M的另一交点为Q当弦PQ最大时,求直线PA的直线方程; (3)求的最大值与最小值. |
|
在如图所示的几何体中,EA⊥平面ABC,DB⊥平面ABC,AC⊥BC,AC=BC=BD=2AE,M是AB的中点.建立适当的空间直角坐标系,解决下列问题: (1)求证:CM⊥EM; (2)求CM与平面CDE所成角的大小. |
|
如图,设椭圆的右顶点与上顶点分别为A、B,以A为圆心,OA为半径的圆与以B为圆心,OB为半径的圆相交于点O、P. (1)若点P在直线上,求椭圆的离心率; (2)在(1)的条件下,设M是椭圆上的一动点,且点N(0,1)到椭圆上点的最近距离为3,求椭圆的方程. |
|
椭圆的左、右焦点分别为F1,F2,一条直线l经过点F1与椭圆交于A,B两点. (1)求△ABF2的周长; (2)若l的倾斜角为,求△ABF2的面积. |
|
如图,在四棱锥P-ABCD中,四边形ABCD是正方形,PA⊥平面ABCD,PA=AB=2,且E,F分别是BC,CD的中点. (1)求证:平面PEF⊥平面PAC; (2)求三棱锥P-EFC的体积. |
|