已知f(x)为定义在(-∞,+∞)上的可导函数,且f(x)<f'(x)对于x∈R恒成立,且e为自然对数的底,则( ) A.f(1)>e•f(0),f(2012)>e2012•f(0) B.f(1)<e•f(0),f(2012)>e2012•f(0) C.f(1)>e•f(0),f(2012)<e2012•f(0) D.f(1)<e•f(0),f(2012)<e2012•f(0) |
|
函数f(x)=lnx+2x-5的零点个数为( ) A.1 B.2 C.0 D.3 |
|
设a=0.64.2,b=0.74.2,c=0.65.1,则a,b,c大小关系正确的是( ) A.a>b>c B.b>a>c C.b>c>a D.c>b>a |
|
函数在(0,1)上为减函数,则实数a的取值范围( ) A. B.(1,2) C.(1,2] D. |
|
下列命题是假命题的是( ) A.命题“若x≠1,则x2-3x+2≠0”的逆否命题是“若x2-3x+2=0,则x=1” B.若命题p:∀x∈R,x2+x+1≠0,则¬p:∃x∈R,x2+x+1=0 C.若p∨q为真命题,则p,q均为真命题 D.“x>2”是“x2-3x+2>0”的充分不必要条件 |
|
函数的值域为( ) A. B. C.(0,] D.(0,2] |
|
已知函数. (1)当时,讨论f(x)的单调性; (2)设g(x)=x2-2bx+4,当,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)+g(x2)≤0,求实数b的取值范围. |
|
如图是一个组合体.它下部的形状是高为10m的圆柱,上部的形状是母线长为30m的圆锥.试问当组合体的顶点O到底面中心O′的距离为多少时,组合体的体积最大?最大体积是多少? |
|
已知(1-2x)7=a+a1x+a2x2+…+a7x7 (1)求a7; (2)a+a2+a4+a6. |
|
一个盒子装有七张卡片,上面分别写着七个定义域为R的函数:f1(x)=x3,f2(x)=x2,f3(x)=x,f4(x)=cosx,f5(x)=sinx,f6(x)=2-x,f7(x)=x+2.从盒子里任取两张卡片: (1)至少有一张卡片上写着奇函数的取法有多少种?(用数字表示) (2)两卡片上函数之积为偶函数的取法有多少种?(用数字表示) |
|