对于R上可导的任意函数f(x),若满足(x-1)f′(x)≥0,则必有( ) A.f(0)+f(2)<2f(1) B.f(0)+f(2)≤2f(1) C.f(0)+f(2)≥2f(1) D.f(0)+f(2)>2f(1) |
|
f′(x)是f(x)的导函数,f′(x)的图象如图所示,则f(x)的图象只可能是( ) A. B. C. D. |
|
给出定义:若函数f(x)在D上可导,即f′(x)存在,且导函数f′(x)在D上也可导,则称f(x)在D上存在二阶导函数,记f″(x)=(f′(x))′,若f″(x)<0在D上恒成立,则称f(x)在D上为凸函数.以下四个函数在上不是凸函数的是( ) A.f(x)=sinx+cos B.f(x)=lnx-2 C.f(x)=-x3+2x-1 D.f(x)=-xe-x |
|
若(3x-1)8=a+a1x+a2x2+…a8x8,那么|a|+|a1|+|a2|+…|a8|的值是( ) A.1 B.28 C.48 D.38 |
|
曲线y=ex在点(3,e3)处的切线与坐标轴所围成的三角形的面积为( ) A.e3 B.2e3 C.3e3 D. |
|
若的值为( ) A.-2 B.2 C.-1 D.1 |
|
已知复数z=1+i,则=( ) A.-2 B.2 C.2i D.-2i |
|
已知函数f(x)=,g(x)=alnx,a∈R. (1)若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值及该切线的方程; (2)设函数h(x)=f(x)-g(x),当h(x)存在最小值时,求其最小值φ(a)的解析式; (3)对(2)中的φ(a),证明:当a∈(0,+∞)时,φ(a)≤1. |
|
提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数. (I)当0≤x≤200时,求函数v(x)的表达式; (Ⅱ)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时). |
|
已知在函数f(x)=mx3-x的图象上以N(1,n)为切点的切线的倾斜角为. (1)求m、n的值; (2)是否存在最小的正整数k,使得不等式f(x)≤k-1995对于x∈[-1,3]恒成立?如果存在,请求出最小的正整数k;如果不存在,请说明理由. |
|