已知圆C的圆心为原点O,且与直线相切. (1)求圆C的方程; (2)点P在直线x=8上,过P点引圆C的两条切线PA,PB,切点为A,B,求证:直线AB恒过定点. |
|
已知△ABC的顶点A(0,1),AB边上的中线CD所在的直线方程为2x-2y-1=0,AC边上的高BH所在直线的方程为y=0. (1)求△ABC的顶点B,C的坐标; (2)若圆M经过A,B且与直线x-y+3=0相切于点P(-3,0),求圆M的方程. |
|
如图(1),边长为2的正方形ABEF中,D,C分别为EF,AF上的点,且ED=CF,现沿DC把△CDF剪切、拼接成如图(2)的图形,再将△BEC,△CDF,△ABD沿BC,CD,BD折起,使E,F,A三点重合于点A′. (1)求证:BA′⊥CD; (2)求四面体B-A′CD体积的最大值. |
|
已知不等式x2-3x+t<0的解集为{x|1<x<m,x∈R} (1)求t,m的值; (2)若函数f(x)=-x2+ax+4在区间(-∞,1]上递增,求关于x的不等式loga(-mx2+3x+2-t)<0的解集. |
|
函数f(x)的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如,函数f(x)=2x+1(x∈R)是单函数.下列命题: ①函数f(x)=x2(x∈R)是单函数; ②若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2); ③若f:A→B为单函数,则对于任意b∈B,它至多有一个原象; ④函数f(x)在某区间上具有单调性,则f(x)一定是单函数. 其中的真命题是 .(写出所有真命题的编号) |
|
如果直线l:y=kx-5与圆x2+y2-2x+my-4=0交于M、N两点,且M、N关于直线2x+y=0对称,则直线l被圆截得的弦长为 . | |
已知点p(x,y)是直线kx+y+4=0(k>0)上一动点,PA、PB是圆C:x2+y2-2y=0的两条切线,A、B是切点,若四边形PACB的最小面积是2,则k的值为 . | |
若直线mx-y+5=0与直线(2m-1)x+my-6=0互相垂直,则实数m= . | |
已知直线(θ是非零常数)与圆x2+y2=100有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有( ) A.60条 B.66条 C.72条 D.78条 |
|
函数的最小值为( ) A. B. C. D. |
|