已知双曲线的一条渐近线方程为y=2x,且点P(2,2)在此双曲线上,则双曲线的离心率为( ) A. B.5 C. D.3 |
|
有五组变量: ①汽车的重量和汽车每消耗1升汽油所行驶的平均路程; ②平均日学习时间和平均学习成绩; ③某人每日吸烟量和其身体健康情况; ④正方形的边长和面积的倒数; ⑤汽车的重量和百公里耗油量; 其中两个变量成负相关的是( ) A.①③ B.③④ C.②⑤ D.④⑤ |
|
已知一个几何体是由上下两部分构成的组合体,其三视图如图,若图中圆的半径为1,等腰三角形的腰长为,则该几何体的体积为( ) A. B. C.2π D.4π |
|
下列有关命题的说法正确的是( ) A.“x2=1”是“x=-1”的充分不必要条件 B.“x=2”是“x2-5x+6=0”的必要不充分条件 C.命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1<0” D.命题“若x=y,则sinx=siny”的逆否命题为真命题 |
|
已知集合S={3,a},T={x|x2-3x<0,x∈Z},S∩T={1},P=S∪T,那么集合P的子集个数是( ) A.32 B.16 C.8 D.4 |
|
已知 m∈R,向量 =( ) A.1 B. C.±1 D. |
|
已知f(x)=logax(a>0且a≠1),若2,f(a1),…,f(an),2n+4(n=1,2,3,…)成等差数列, (1)求数列{an}的通项公式; (2)设{bn}=anf(an),若数列{bn}的前n项和是Sn,试求Sn; (3)令cn=anlgan,问是否存在实数a,使得数列{cn}中每一项恒小于它后面的项,若存在,请求出a的范围;,若不存在,请说明理由. |
|
某县一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4吨、硝酸盐18吨;生产1车皮乙种肥料需要的主要原料是磷酸盐1吨、硝酸盐15吨.先库存磷酸盐10吨、硝酸盐66吨,在此基础上生产这两种混合肥料.若生产1车皮甲种肥料产生的利润为10000元;生产1车皮乙种肥料产生的利润为5000元.那么分别生产甲、乙两种肥料各多少车皮能产生最大的利润? |
|
在△ABC中,a、b、c分别是∠A、∠B、∠C的对边长,已知a、b、c成等比数列,且a2-c2=ac-bc,求∠A的大小及的值. |
|
解不等式组. |
|