已知命题P:抛物线y=2x2的准线方程为y=-;命题q:若函数f(x+1)为偶函数,则f(x)关于x=1对称.则下列命题是真命题的是( ) A.p∧q B.p∨(¬q) C.(¬p)∧(¬q) D.p∨q |
|
设函数f(x)=g(x)+x2,曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,则曲线y=f(x)在点(1,f(1))处切线的斜率为( ) A.4 B.- C.2 D.- |
|
下列说法中,正确的是( ) A.命题“若am2<bm2,则a<b”的逆命题是真命题 B.命题“∃x∈R,x2-x>0”的否定是“∀x∈R,x2-x≤0” C.命题“p∨q”为真命题,则命题“p”和命题“q”均为真命题 D.已知x∈R,则“x>1”是“x>2”的充分不必要条件 |
|
已知A是△ABC内角,命题p:;命题q:,则q是p的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 |
|
已知集合等于( ) A.(1,2) B.(-∞,2) C.(2,5) D.(-∞,5) |
|
已知函数的最大值为g(a). (1)设,求t的取值范围; (2)用第(1)问中的t作自变量,把f(x)表示为t的函数m(t); (3)求g(a). |
|
在对数函数y=log2x的图象上,有A、B、C三点,它们的横坐标依次为a,a+1,a+2,其中a≥1,求△ABC面积的最大值. |
|
已知函数是定义在(-1,1)上的奇函数,且, ①求函数f(x)的解析式; ②判断函数f(x)在(-1,1)上的单调性并用定义证明; ③解关于x的不等式f(log2x-1)+f(log2x)<0. |
|
不等式4≤3sin2x-cos2x-4cosx+a≤20恒成立,求a的取值范围. |
|
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的图象与y轴的交点为(0,1),它在y轴右侧的第一个最高点和第一个最低点的坐标分别为(x,0)和(x+2π,-2). (1)求f(x)的解析式及x的值; (2)求f(x)的增区间; (3)若x∈[-π,π],求f(x)的值域. |
|