函数y=x-3和y=log3x的定义域分别是P、Q,则( ) A.P⊂Q B.P∩Q=P C.P∪∁RQ=P D.Q∩∁RP=∅ |
|
已知函数f(x)=x2-1与函数g(x)=alnx(a≠0). (I)若f(x),g(x)的图象在点(1,0)处有公共的切线,求实数a的值; (II)设F(x)=f(x)-2g(x),求函数F(x)的极值. |
|
已知动圆C过定点F(),且与直线x=相切,圆心C的轨迹记为E.,曲线E与直线l:y=k(x+1)(k∈R)相交于A、B两点. (Ⅰ)求曲线E的方程; (Ⅱ)当△OAB的面积等于时,求k的值; (Ⅲ)在曲线E上,是否存在与k的取值无关的定点M,使得MA⊥MB?若存在,求出所有符合条件的定点M;若不存在,请说明理由. |
|
如图,在四棱锥S-ABCD中,底面ABCD为矩形,SA⊥平面ABCD,二面角S-CD-A的平面角为45°,M为AB中点,N为SC中点. (1)证明:MN∥平面SAD; (2)证明:平面SMC⊥平面SCD; (3)若,求实数λ的值,使得直线SM与平面SCD所成角为30°. |
|
已知数列{an}的首项,,n=1,2,3,…. (Ⅰ)证明:数列是等比数列; (Ⅱ)求数列的前n项和Sn. |
|
已知A、B、C是△ABC三内角,向量=(-1,),=(cosA,sinA),且, (Ⅰ)求角A (Ⅱ)若. |
|
若对任意x∈R,y∈R有唯一确定的f (x,y)与之对应,则称f (x,y)为关于x,y的二元函数. 定义:同时满足下列性质的二元函数f (x,y)为关于实数x,y的广义“距离”: (Ⅰ)非负性:f (x,y)≥0; (Ⅱ)对称性:f (x,y)=f (y,x); (Ⅲ)三角形不等式:f (x,y)≤f (x,z)+f (z,y)对任意的实数z均成立. 给出下列二元函数: ①f (x,y)=(x-y)2; ②f (x,y)=|x-y|; ③f (x,y)=; ④f (x,y)=|sin(x-y)|. 则其中能够成为关于x,y的广义“距离”的函数编号是 .(写出所有真命题的序号) |
|
在△ABC中,三边a、b、c所对的角分别为A、B、C,若,则角C的大小为 . | |
分别从写有数字1,2,3,4的四张卡片中随机取出两张,则取出的两张卡片上的数字之和为奇数的概率是 . | |
已知点P(x,y)满足条件(k为常数),若z=x+3y的最大值为8,则k= . | |