已知双曲线的一条渐近线方程为,则双曲线的离心率为( ) A. B. C. D. |
|
平面内有两定点A、B及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A、B为焦点的椭圆”,那么( ) A.甲是乙成立的充分不必要条件 B.甲是乙成立的必要不充分条件 C.甲是乙成立的充要条件 D.甲是乙成立的非充分非必要条件 |
|
若抛物线y2=2px的焦点与椭圆的右焦点重合,则p的值为( ) A.-2 B.2 C.-4 D.4 |
|
方程2x2-5x+2=0的两个根可分别作为( ) A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率 D.两椭圆的离心率 |
|
已知双曲线3x2-y2=9,则双曲线右支上的点P到右焦点的距离与点x2到右准线的距离之比等于( ) A. B. C.2 D.4 |
|
已知△ABC的顶点B、C在椭圆上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是( ) A. B.6 C. D.12 |
|
已知函数f(x)=x2+m,其中m∈R.定义数列{an}如下:a1=0,an+1=f(an),n∈N*. (1)当m=1时,求a2,a3,a4的值; (2)是否存在实数m,使a2,a3,a4构成公差不为0的等差数列?若存在,请求出实数m的值,若不存在,请说明理由; (3)求证:当时,总能找到k∈N,使得ak大于2010. |
|
已知圆C经过点A(-2,0),B(0,2),且圆心在直线y=x上,又直线l:y=kx+1与圆C相交于P、Q两点. (1)求圆C的方程; (2)若,求实数k的值; |
|
函数. (1)若f(x)在点(1,f(1))处的切线斜率为,求实数a的值; (2)若f(x)在x=1取得极值,求函数f(x)的单调区间. |
|
长方体ABCD-A1B1C1D1中AB=1,AA1=AD=2.点E为AB中点. (1)求三棱锥A1-ADE的体积; (2)求证:A1D⊥平面ABC1D1; (3)求证:BD1∥平面A1DE. |
|