已知函数f(x)=-x3+bx2+cx+bc, (1)若函数f(x)在x=1处有极值-,试确定b、c的值; (2)在(1)的条件下,曲线y=f(x)+m与x轴仅有一个交点,求实数m的取值范围; (3)记g(x)=|f′( x)|(-1≤x≤1)的最大值为M,若M≥k对任意的b、c恒成立,试求k的取值范围. (参考公式:x3-3bx2+4b3=(x+b)(x-2b)2) |
|
已知椭圆G与双曲线12x2-4y2=3有相同的焦点,且过点. (1)求椭圆G的方程; (2)设F1、F2是椭圆G的左焦点和右焦点,过F2的直线l:x=my+1与椭圆G相交于A、B两点,请问△ABF1的内切圆M的面积是否存在最大值?若存在,求出这个最大值及直线l的方程,若不存在,请说明理由. |
|
如图,直二面角D-AB-E中,四边形ABCD是正方形,AE=EB,F为CE上的点,且BF⊥平面ACE. (1)求证:AE⊥平面BCE; (2)求二面角B-AC-E的余弦值. |
|
已知数列{an},Sn是其前n项和,且an=7Sn-1+2(n≥2),a1=2. (1)求数列{an} 的通项公式; (2)设bn=,Tn是数列 {bn}的前n项和,求T10的值. |
|
2008年金融风暴横扫全球.为抗击金融风暴,市工贸系统决定对所属企业给予低息贷款的扶持.该系统先根据相关评分标准对各个企业进行了评估,并依据评估得分将这些企业分别评定为优秀、良好、合格、不合格4个等级,然后根据评估等级分配相应的低息贷款金额,其评估标准和贷款金额如下表:
(Ⅰ)估计该系统所属企业评估得分的中位数; (Ⅱ)该系统要求各企业对照评分标准进行整改,若整改后优秀企业数量不变,不合格企业、合格企业、良好企业的数量依次成等差数列,系统所属企业获得贷款的均值(即数学期望)不低于410万元,那么整改后不合格企业占企业总数的百分比的最大值是多少? |
||||||||||||||||
已知函数f(x)=2sinωxcosωx+cos2ωx-sin2ωx,(ω>0),若函数f(x)的最小正周期为. (1)求ω的值,并求函数f(x)的最大值; (2)若0<x<,当f(x)=时,求的值. |
|
极坐标系中,直线l的极坐标方程为,则极点在直线l上的射影的极坐标是 . | |
如图所示,圆的内接△ABC的∠C的平分线CD延长后交圆于点E,连接BE,已知BD=3,CE=7,BC=5,则线段BE= . | |
某射手射击1次,击中目标的概率是0.9.他连续射击4次,且各次射击是否击中目标相互之间没有影响.有下列结论: ①他第3次击中目标的概率是0.9; ②他恰好击中目标3次的概率是0.93×0.1; ③他至少击中目标1次的概率是1-0.14. 其中正确结论的序号是 (写出所有正确结论的序号). |
|
已知点P是不等式组所表示的可行域内的一动点,则点P到抛物线x2=4y的焦点F的距离的最小值是 . | |