已知两个数列{Sn}、{Tn}分别: 当n∈N*,Sn=1-,Tn=. (1)求S1,S2,T1,T2; (2)猜想Sn与Tn的关系,并用数学归纳法证明. |
|
甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格. (Ⅰ)若甲没有通过测试,求甲选择试题有多少种? (Ⅱ)求甲、乙两人考试均合格的概率. |
|
设函数f(x)=x2ex-1+ax3+bx2,已知x=-2和x=1为f(x)的极值点. (1)求a和b的值; (2)讨论f(x)的单调性. |
|
已知函数f(x)=x3-3x. (1)求函数f(x)在[-3,]上的最大值和最小值; (2)过点P(2,-6)作曲线y=f(x)的切线,求此切线的方程. |
|
下列是关于复数的类比推理: ①复数的加减法运算可以类比多项式的加减法运算法则; ②由实数绝对值的性质|x|2=x2类比得到复数z的性质|z|2=z2; ③已知a,b∈R,若a-b>0,则a>b.类比得已知z1,z2∈C,若z1-z2>0,则z1>z2; ④由向量加法的几何意义可以类比得到复数加法的几何意义. 其中推理结论正确的是 . |
|
观察以下不等式 可归纳出对大于1的正整数n成立的一个不等式,则不等式右端f(n)的表达式应为 . |
|
若三角形的内切圆半径为r,三边的长分别为a,b,c,则三角形的面积S=r(a+b+c),根据类比思想,若四面体的内切球半径为R,四个面的面积分别为S1、S2、S3、S4,则此四面体的体积V= . | |
若,则实数k的值为 . | |
平面上有n个圆,其中每两个都相交于两点,每三个都无公共点,它们将平面分成f(n)块区域,有f(1)=2,f(2)=4,f(3)=8,则f(n)的表达式为( ) A.2n B.2n C.n2-n+2 D.2n-(n-1)(n-2)(n-3) |
|
函数( ) A.在(0,2)上单调递减 B.在(-∞,0)和(2,+∞)上单调递增 C.在(0,2)上单调递增 D.在(-∞,0)和(2,+∞)上单调递减 |
|