相关试题
当前位置:首页 > 高中数学试题
已知焦点在x轴上的双曲线C的两条渐近线过坐标原点,且两条渐近线与以点A(0,manfen5.com 满分网)为圆心、1为半径的圆相切,又知双曲线C的一个焦点与点A关于直线y=x对称.
(1)求双曲线C的方程;
(2)求与双曲线C共渐近线,且过点(1,manfen5.com 满分网)的双曲线方程,并求出此双曲线方程的焦点坐标,长轴长和虚轴长.
已知椭圆E的中心在坐标原点,焦点在坐标轴上,且经过A(-2,0)、B(2,0)、manfen5.com 满分网三点.
(1)求椭圆E的方程:
(2)若点D为椭圆E上不同于A、B的任意一点,F(-1,0),H(1,0),当△DFH内切圆的面积最大时.求内切圆圆心的坐标.
某市十所重点中学进行高三联考,共有5000名考生,为了了解数学学科的学习情况,现从中随机
抽出若干名学生在这次测试中的数学成绩,制成如下频率分布表:
分组频数频率
[80,90)
[90,100)0.050
[100,110)0.200
[110,120)360.300
[120,130)0.275
[130,140)12
[140,150]0.050
合计
(1)根据上面频率分布表,推出①,②,③,④处的数值分别为________________________
(2)在所给的坐标系中画出区间[80,150]上的频率分布直方图;
(3)根据题中信息估计总体:①120分及以上的学生数;②成绩落在[110,126]中的概率.

manfen5.com 满分网
设F1、F2是双曲线x2-y2=4的两焦点,Q是双曲线上任意一点,从F1 引∠F1QF2平分线的垂线,垂足为P,则点P的轨迹方程是   
已知椭圆manfen5.com 满分网(a>b>0)的焦点为F1,F2.以|F1F2|为直径的圆与椭圆有公共点,则椭圆的离心率e的取值范围是_   
若双曲线manfen5.com 满分网-manfen5.com 满分网=1的左焦点在抛物线y2=2px的准线上,则p的值为   
抛物线y=4x2的焦点坐标是   
已知x、y的取值如下表:
x134
y2.24.34.86.7
从散点图分析,y与x线性相关,且回归方程为manfen5.com 满分网=0.95x+a,则a=   
已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是( )
A.2
B.3
C.manfen5.com 满分网
D.manfen5.com 满分网
以正方形ABCD的相对顶点A、C为焦点的椭圆,恰好过正方形四边的中点,则该椭圆的离心率为( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
共1028964条记录 当前(68735/102897) 首页 上一页 68730 68731 68732 68733 68734 68735 68736 68737 68738 68739 68740 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.