设f(x)是定义在R上的奇函数,且当x>0时,f(x)=x2-3,则f(-2)= . | |
顶点在原点且以双曲线的右准线为准线的抛物线方程是 . | |
已知复数z的实部为1,虚部为-2,则的虚部为 . | |
已知集合A={0,m},B={n|n2-3n<0,n∈Z}若A∩B≠∅,则m的值为 . | |
已知点A(-1,2)是抛物线C:y=2x2上的点,直线l1过点A,且与抛物线C 相切,直线l2:x=a(a≠-1)交抛物线C于点B,交直线l1于点D. (1)求直线l1的方程; (2)设△BAD的面积为S1,求|BD|及S1的值; (3)设由抛物线C,直线l1,l2所围成的图形的面积为S2,求证:S1:S2的值为与a无关的常数. |
|
如图,在直线y=0和y=a(a>0)之间表示的是一条河流,河流的一侧河岸(x轴)是一条公路,且公路随时随处都有公交车来往.家住A(0,a)的某学生在位于公路上B(d,0)(d>0)处的学校就读.每天早晨该学生都要从家出发,可以先乘船渡河到达公路上某一点,再乘公交车去学校,或者直接乘船渡河到达公路上B(d,0)处的学校.已知船速为υ(υ>0),车速为2υ(水流速度忽略不计). (Ⅰ)若d=2a,求该学生早晨上学时,从家出发到达学校所用的最短时间; (Ⅱ)若,求该学生早晨上学时,从家出发到达学校所用的最短时间. |
|
已知x=1是函数f(x)=mx3-3(m+1)x2+nx+1的一个极值点,其中m,n∈R,m<0. (Ⅰ)求m与n的关系表达式; (Ⅱ)求f(x)的单调区间; (Ⅲ)当x∈[-1,1]时,函数y=f(x)的图象上任意一点的切线斜率恒大于3m,求m的取值范围. |
|
已知两个数列{Sn}、{Tn}分别: 当n∈N*,Sn=1-,Tn=. (1)求S1,S2,T1,T2; (2)猜想Sn与Tn的关系,并用数学归纳法证明. |
|
已知函数f(x)=x3-3x. (1)求函数f(x)在[-3,]上的最大值和最小值; (2)过点P(2,-6)作曲线y=f(x)的切线,求此切线的方程. |
|
求抛物线y2=2x与直线y=4-x围成的平面图形的面积. |
|