已知函数f(x)=-x2+ax+b2-b+1(a∈R,b∈R),对任意实数x都有f(1-x)=f(1+x)成立,若当x∈[-1,1]时,f(x)>0恒成立,则b的取值范围是( ) A.-1<b<0 B.b>2 C.b<-1或b>2 D.不能确定 |
|
已知y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-2x,则在R上f(x)的表达式是( ) A.-x(x-2) B.x(|x|-2) C.|x|(x-2) D.|x|(|x|-2) |
|
偶函数y=f(x)(x∈R)在x<0时是增函数,若x1<0,x2>0且|x1|<|x2|,下列结论正确的是( ) A.f(-x1)<f(-x2) B.f(-x1)>f(-x2) C.f(-x1)=f(-x2) D.f(-x1),f(-x2)的大小关系不能确定 |
|
设函数若f(x)>1,则x的取值范围是( ) A.(-1,1) B.(-1,+∞) C.(-∞,-2)∪(0,+∞) D.(-∞,-1)∪(1,+∞) |
|
已知命题p:“∀x∈[0,1],a≥ex”,命题q:“∃x∈R,x2+4x+a=0”,若命题“p∧q”是真命题,则实数a的取值范围是( ) A.[e,4] B.[1,4] C.(4,+∞) D.(-∞,1] |
|
函数y=e-x-ex满足( ) A.奇函数,在(0,+∞)上是减函数 B.偶函数,在(0,+∞)上是减函数 C.奇函数,在(0,+∞)上是增函数 D.偶函数,在(0,+∞)上是增函数 |
|
函数的定义域是(-∞,1)∪[2,5),则其值域是( ) A. B. C.(-∞,2] D.(0,+∞) |
|
函数y=x2+2(b-1)x+c(x∈[0,+∞))是单调函数的充要条件是( ) A.b≥1 B.b≤1 C.b>1 D.b<1 |
|
设函数fn(x)=Cn2+Cn3x+Cn4x2+…+Cnnxn-2(n∈N,n≥2),当x>-1,且x≠0时,证明:fn(x)>0恒成立. |
|
已知数列{an}满足an=n•2n-1(n∈N*).是否存在等差数列{bn},使得数列{an}与{bn}满足an=b1Cn1+b2Cn2+b3Cn3+…+bnCnn对一切正整数n成立?证明你的结论. |
|