已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4= . | |
已知函数f(x)满足:x≥4,则f(x)=;当x<4时f(x)=f(x+1),则f(2+log23)═ . | |
计算: . | |
已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4)…,则第60个数对是 . | |
已知定义在R上的函数y=f(x)满足下列三个条件: ①对任意的x∈R都有f(x)=f(x+4); ②对于任意的0≤x1<x2≤2,都有f(x1)<f(x2), ③y=f(x+2)的图象关于y轴对称, 则下列结论中,正确的是( ) A.f(4.5)<f(6.5)<f(7) B.f(4.5)<f(7)<f(6.5) C.f(7)<f(4.5)<f(6.5) D.f(7)<f(6.5)<f(4.5) |
|
设集合A={x,y|y=ax+1},B={x,y|y=|x|},若A∩B的子集恰有2个,则实数a的取值范围是( ) A.a≠±l B.a≠0 C.-l≤a≤1 D.a≤-l或a≥l |
|
以下是面点师一个工作环节的数学模型:如图,在数轴上截取与闭区间[0,1]对应的线段,对折后(坐标1所对应的点与原点重合)再均匀的拉成一个单位长度的线段,这一过程称为一次操作(例如在第一次操作完成后,原来的坐标变成,原来的坐标变成1,等等).则区间[0,1]上(除两个端点外)的点,在第二次操作完成后,恰好被拉到与1重合的点所对应的坐标是,那么在第n次操作完成后(n≥1),恰好被拉到与1重合的点对应的坐标是( ) A.为[1,2n]中所有奇数) B. C.为[1,2n-1]中所有奇数) D. |
|
已知函数f(x)=3-2|x|,g(x)=x2-2x,构造函数y=F(x),定义如下:当f(x)≥g(x)时,F(x)=g(x);当f(x)<g(x)时,F(x)=f(x),那么F(x)( ) A.有最大值3,最小值-1 B.有最大值7,无最小值 C.有最大值3,无最小值 D.无最大值,也无最小值 |
|
下列有关样本相关系数的说法不正确的是( ) A.相关系数用来衡量x与y之间的线性相关程度 B.|r|≤1,且|r|越接近0,相关程度越小 C.|r|≤1,且|r|越接近1,相关程度越大 D.|r|≥1,且|r|越接近1,相关程度越大 |
|
如图,在梯形ABCD中,AB∥CD,AB=a,CD=b(a>b).若EF∥AB,EF到CD与AB的距离之比为m:n,则可推算出:,用类比的方法,推想出下列问题的结果,在上面的梯形ABCD中,延长梯形的两腰AD和BC交于O点,设△OAB,△OCD的面积分别为S1,S2,EF∥AB,,且EF到CD与AB的距离之比为m:n,则△OEF的面积S与S1,S2的关系是( ) A. B. C. D. |
|