已知f(x)=ax3+bx2+cx+d(a≠0),记△=4(b2-3ac),则当△≤0且a>0时,f(x)的大致图象为( ) A. B. C. D. |
|
若某空间几何体的三视图如图所示,则该几何体的体积是( ) A.2 B.1 C. D. |
|
设,命题甲:x1≠x2,命题乙:x1x2<y1y2,则甲是乙成立的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 |
|
同时具有性质“①最小正周期是π,②图象关于直线对称;③在上是增函数”的一个函数是( ) A. B. C. D. |
|
设b、c表示两条直线,α,β表示两个平面,则下列命题是真命题的是( ) A.若b⊂α,c∥α,则b∥c B.若b⊂α,b∥c,则c∥α C.若c∥α,α⊥β,则c⊥β D.若c∥α,c⊥β,则α⊥β |
|
已知等差数列{an}的公差为2,若a1,a3,a4成等比数列,则a2=( ) A.-4 B.-6 C.-8 D.-10 |
|
已知A={x|x2>4},B={x|log3x<1},则A∩B=( ) A.{x|x<-2} B.{x|2<x<3} C.{x|x>3} D.{x|x<-2}∪{x|2<x<3}∪{x|2<x<3} |
|
设椭圆E:(a>b>0)过M(2,),N(,1)两点,O为坐标原点, (1)求椭圆E的方程; (2)是否存在圆心在原点的圆,使该圆的任意一条切线与椭圆E恒有两个交点A、B,且?若存在,写出该圆的方程,并求|AB|取值范围;若不存在,说明理由. |
|
设圆C1的方程为(x+2)2+(y-3m-2)2=4m2,直线l的方程为y=x+m+2. (1)若m=1,求圆C1上的点到直线l距离的最小值; (2)求C1关于l对称的圆C2的方程; (3)当m变化且m≠0时,求证:C2的圆心在一条定直线上,并求C2所表示的一系列圆的公切线方程. |
|
已知△ABC的顶点A,B在椭圆x2+3y2=4上,C在直线l:y=x+2上,且AB∥l. (Ⅰ)当AB边通过坐标原点O时,求AB的长及△ABC的面积; (Ⅱ)当∠ABC=90°,且斜边AC的长最大时,求AB所在直线的方程. |
|