设Sn是公差不为0的等差数列an的前n项和,且S1,S2,S4成等比数列.(1)求的值;(2)若a5=9,求an及Sn,的表达式. |
|
已知是第二象限角. (1)求tanα的值; (2)求的值. |
|
设,若A⊆B,求实数a的取值范围. |
|
已知函数的图象与函数g(x)的图象关于直线y=x对称,令h(x)=g(1-|x|),则关于h(x)有下列命题: ①h(x)的图象关于原点对称; ②h(x)为偶函数; ③h(x)的最小值为0; ④h(x)在(0,1)上为减函数. 其中正确命题的序号为: . |
|
已知函数f(x)在定义域(-∞,0]内存在反函数,且f(x-1)=x2-2x,则= . | |
在数列{an}中,a1=-1,an+1-an=3n-1,则an= . | |
已知,则tanα= . | |
函数的定义域为 . | |
在f(m,n)中,m,n,f(m,n)∈N*,且对任何m,n都有: (Ⅰ)f(1,1)=1, (Ⅱ)f(m,n+1)=f(m,n)+2, (Ⅲ)f(m+1,1)=2f(m,1). 给出下列三个结论: ①f(1,5)=9; ②f(5,1)=16; ③f(5,6)=26. 其中正确的结论个数是( )个. A.3 B.2 C.1 D.0 |
|
设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式的解集为( ) A.(-1,0)∪(1,+∞) B.(-∞,-1)∪(0,1) C.(-∞,-1)∪(1,+∞) D.(-1,0)∪(0,1) |
|