已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1}且B≠∅,若A∪B=A,则( ) A.-3≤m≤4 B.-3<m<4 C.2<m<4 D.2<m≤4 |
|
已知f(x)=ax2+bx+3a+b是偶函数,其定义域为[a-1,2a],则点(a,b)的轨迹为( ) A.点 B.直线 C.线段 D.射线 |
|
指数函数y=f(x)的反函数的图象过点(2,-1),则此指数函数为( ) A. B.y=2x C.y=3x D.y=10x |
|
设函数f(x)=x2+bln(x+1),其中b≠0. (1)若b=-12,求f(x)的单调递增区间; (2)如果函数f(x)在定义域内既有极大值又有极小值,求实数b的取值范围; (3)求证对任意的n∈N*,不等式恒成立 |
|
如图,椭圆长轴端点为A,B,O为椭圆中心,F为椭圆的右焦点,且,. (1)求椭圆的标准方程; (2)记椭圆的上顶点为M,直线l交椭圆于P,Q两点,问:是否存在直线l,使点F恰为△PQM的垂心?若存在,求出直线l的方程;若不存在,请说明理由. |
|
如图,五面体A-BCC1B1中,AB1=4.底面ABC 是正三角形,AB=2.四边形BCC1B1是矩形,二面角A-BC-C1为直二面角. (Ⅰ)D在AC上运动,当D在何处时,有AB1∥平面BDC1,并且说明理由; (Ⅱ)当AB1∥平面BDC1时,求二面角C-BC1-D余弦值. |
|
在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张券中任抽2张,求: (1)该顾客中奖的概率 (2)该顾客获得的奖品总价值ξ(元)的概率分布列和数学期望. |
|
设向量,向量,0≤α<π. (1)若向量⊥,求tanα的值; (2)求的最大值及此时α的值. |
|
如图所示的三角形数阵中,满足:(1)第1行的数为1,(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加,则第n+1行中第2个数是 (用n表示). | |
对a,b∈R,记max{a,b}=函数f(x)=max{|x+1|,|x-2|}(x∈R)的最小值是 . | |