函数y=Asin(ωx+φ)(ω>0,,x∈R)的部分图象如图所示,则函数表达式为( ) A. B. C. D. |
|
已知{an}是等差数列,a1=-9,S3=S7,那么使其前n项和Sn最小的n是( ) A.4 B.5 C.6 D.7 |
|
函数f(x)=cos2x的图象向左平移个长度单位后得到g(x)的图象,则g(x)=( ) A.sin2 B.-cos2 C.cos2 D.-sin2 |
|
集合M={y|y=x2-1,x∈R},集合N={x|y=,x∈R},则M∩N=( ) A.{t|0≤t≤3} B.{t|-1≤t≤3} C.{(-,1),(,1)} D.∅ |
|
若复数(a∈R,i为虚数单位位)是纯虚数,则实数a的值为( ) A.-2 B.4 C.-6 D.6 |
|
已知函数.(a为常数,a>0) (Ⅰ)若是函数f(x)的一个极值点,求a的值; (Ⅱ)求证:当0<a≤2时,f(x)在上是增函数; (Ⅲ)若对任意的a∈(1,2),总存在 ,使不等式f(x)>m(1-a2)成立,求实数m的取值范围. |
|
已知椭圆中心在原点,焦点在x轴上,离心率e=,过椭圆的右焦点且垂直于长轴的弦长为 (1)求椭圆的标准方程; (2)已知直线l与椭圆相交于P、Q两点,O为原点,且OP⊥OQ,试探究点O到直线l的距离是否为定值?若是,求出这个定值;若不是,请说明理由. |
|
一袋中装有分别标记着1,2,3,4数字的4只小球,每次从袋中取出一只球,设每只小球被取到的可能性相同. (1)若每次取出的球不放回袋中,求恰好第三次取到标号为3的球的概率; (2)若每次取出的球放回袋中,然后再取出一只球,现连续取三次球,若三次取出的球中标号最大的数字为ξ,求ξ的概率分布列与期望. |
|
如图,已知平行四边形ABCD和矩形ACEF所在的平面互相垂直,AB=1,AD=2,∠ADC=60°,AF=a(a>0),M是线段EF的中点. (1)求证:AC⊥BF; (2)若二面角F-BD-A的大小为60°,求a的值; (3)令a=1,设点P为一动点,若点P从M出发,沿棱按照M→E→C的路线运动到点C,求这一过程中形成的三棱锥P-BFD的体积的最小值. |
|
已知向量 ,,函数f(x)=•. (Ⅰ)求f(x)的单调增区间; (II)若在△ABC中,角A、B、C所对的边分别是a、b、c,且满足:,求f(A)的取值范围. |
|