如图,已知直线l:x=my+1过椭圆的右焦点F,抛物线:的焦点为椭圆C的上顶点,且直线l交椭圆C于A、B两点,点A、F、B在直线g:x=4上的射影依次为点D、K、E. (Ⅰ)求椭圆C的方程; (Ⅱ)若直线l交y轴于点M,且,当m变化时,探求λ1+λ2的值是否为定值?若是,求出λ1+λ2的值,否则,说明理由; (Ⅲ)连接AE、BD,试证明当m变化时,直线AE与BD相交于定点. |
|
已知直线l与函数f(x)=lnx的图象相切于点(1,0),且l与函数(m<0)的图象也相切. (Ⅰ)求直线l的方程及m的值; (Ⅱ)设,若恒成立,求实数a的取值范围. |
|
已知二次函数f(x)=x2-ax+a(a>0,x∈R)有且只有一个零点,数列{an}的前n项和Sn=f(n)(n∈N*). (Ⅰ)求数列{an}的通项公式; (Ⅱ)设,求数列{bn}的前n项和Tn. |
|
如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=BC=2AC=2,D为AA1中点. (Ⅰ)求证:CD⊥B1C1; (Ⅱ)求证:平面B1CD⊥平面B1C1D; (Ⅲ)求三棱锥C1-B1CD的体积. |
|
某社区举办2010年上海世博会知识宣传活动,进行现场抽奖.现有“世博会会徽”、“海宝”(世博会吉祥物)图案和普通卡片三种卡片共24张. (1)若已知“世博会会徽”共3张,若从中任取出1张卡片,取到“海宝”的概率是.问普通卡片的张数是多少? (2)现将1张“世博会会徽”、2张“海宝”、3张普通卡片放置抽奖盒中,抽奖规则是:抽奖者每次抽取两张卡片,若抽到两张“海宝”卡获一等奖,抽到“世博会会徽”获二等奖.求抽奖者获奖的概率. |
|
已知,,其中ω>0,若函数,且函数f(x)的图象与直线y=2相邻两公共点间的距离为π. (Ⅰ)求ω的值; (Ⅱ)在△ABC中,a、b、c分别是角A、B、C、的对边,且,f(A)=1,求△ABC的面积. |
|
过双曲线=1的一个焦点F作一条渐近线的垂线,若垂足恰在线段OF(O为原点)的垂直平分线上,则双曲线的离心率为 . | |
设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式的解集是 . | |
数列{an}满足,若,则a2004的值为 . | |
已知实数x,y满足,则x2+y2的最大值为 . | |