函数f(x)的定义域为R,若f(x+1)与f(x-1)都是奇函数,则( ) A.f(x)是偶函数 B.f(x)是奇函数 C.f(x)=f(x+2) D.f(x+3)是奇函数 |
|
若函数f(x)=,若f(a)>f(-a),则实数a的取值范围是( ) A.(-1,0)∪(0,1) B.(-∞,-1)∪(1,+∞) C.(-1,0)∪(1,+∞) D.(-∞,-1)∪(0,1) |
|
若f(x)是R上周期为5的奇函数,且满足f(1)=1,f(2)=2,则f(3)-f(4)=( ) A.1 B.2 C.-2 D.-1 |
|
设偶函数f(x)满足f(x)=2x-4(x≥0),则{x|f(x-2)>0}=( ) A.{x|x<-2或x>4} B.{x|x<0或x>4} C.{x|x<0或x>6} D.{x|x<-2或x>2} |
|
已知函数F(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b的取值范围是( ) A. B. C.(3,+∞) D.[3,+∞) |
|
设a=log32,b=ln2,c=,则( ) A.a<b<c B.b<c<a C.c<a<b D.c<b<a |
|
已知椭圆C1的方程是,双曲线C2的左、右焦点分别为C1的左、右顶点,C2的左、右顶点分别为C1的左、右焦点. (1)求双曲线C2的方程; (2)若直线与双曲线C2恒有两个不同的交点A,B,且(O为原点),求k的取值范围; (3)设P1,P2分别是C2的两条渐近线上的点,点M在C2上,且,求△P1OP2的面积. |
|
已知复数z1=m+(4-m2)i(m∈R),z2=2cosθ+(λ+2sinθ)i(λ∈R),若z1=z2,试求λ的取值范围. |
|
已知函数f(x)=,g(x)=x2-x+1,则函数y=g(x)-f(x)有两个零点的实数a的取值范围是 . | |
已知双曲线-=1(a>0,b>0)的左、右焦点分别为F1、F2,点P在双曲线的右支上,且|PF1|=3|PF2|,则此双曲线的离心率e的最大值为 . | |