定义方程f(x)=f′(x)的实数根x叫做函数f(x)的“新驻点”,如果函数g(x)=x,h(x)=lnx,φ(x)=cosx(x∈(,π))的“新驻点”分别为α,β,γ,那么α,β,γ的大小关系是( ) A.α<β<γ B.α<γ<β C.γ<α<β D.β<α<γ |
|
如图,已知双曲线,A,C分别是虚轴的上、下顶点,B是左顶点,F为左焦点,直线AB与FC相交于点D,则∠BDF的余弦值是( ) A. B. C. D. |
|
若不等式对于一切非零实数x均成立,则实数a的取值范围是( ) A.[-1,1] B.(-1,1) C.(-2,2) D.[-2,2] |
|
给出下列四个命题: ①分别与两条异面直线都相交的两条直线一定是异面直线; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行; ④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中为真命题的是( ) A.①和② B.②和③ C.③和④ D.②和④ |
|
已知M=,由如程序框图输出的S=( ) A.0 B. C.1 D. |
|
已知向量、满足,且,则=( ) A.10 B.20 C.21 D.30 |
|
设实数a∈R且(a-i)•i(其中i是虚数单位)为正实数,则a的值为( ) A.-1 B.0 C.0或-1 D.1 |
|
函数图象的对称轴方程可以是( ) A. B. C. D. |
|
已知函数f(x)=ax2-|x|+2a-1(a为实常数). (1)若a=1,求f(x)的单调区间; (2)若a>0,设f(x)在区间[1,2]的最小值为g(a),求g(a)的表达式; (3)设,若函数h(x)在区间[1,2]上是增函数,求实数a的取值范围. |
|
已知a为实数,. (1)求证:对于任意实数a,y=f(x)在(-∞,+∞)上是增函数; (2)当f(x)是奇函数时,若方程f-1(x)=log2(x+t)总有实数根,求实数t的取值范围. |
|