已知函数f(x)=2x2+(4-m)x+4-m,g(x)=mx,若对于任一实数x,f(x)与g(x)的值至少有一个为正数,求实数m的取值范围. |
|
21、设的大小,并证明你的结论. |
|
如图,有一个圆柱形的无盖杯子,它的内表面积是100cm2,试用解析式将杯子的容积V(cm3)表示成底面内半径x(cm)的函数. |
|
若定义在R上的函数f(x)满足:对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,则下列说法一定正确的是( ) A.f(x)为奇函数 B.f(x)为偶函数 C.f(x)+1为奇函数 D.f(x)+1为偶函数 |
|
若函数f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)-g(x)=ex,则有( ) A.f(2)<f(3)<g(0) B.g(0)<f(3)<f(2) C.f(2)<g(0)<f(3) D.g(0)<f(2)<f(3) |
|
函数的图象关于( ) A.y轴对称 B.直线y=-x对称 C.坐标原点对称 D.直线y=x对称 |
|
若非空集合A,B,C满足A∪B=C,且B不是A的子集,则( ) A.“x∈C”是“x∈A”的充分条件但不是必要条件 B.“x∈C”是“x∈A”的必要条件但不是充分条件 C.“x∈C”是“x∈A”的充要条件 D.“x∈C”既不是“x∈A”的充分条件也不是“x∈A”必要条件 |
|
已知函数f(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b的取值范围是 . | |
非空集合G关于运算⊕满足:(1)对任意的a,b∈G,都有a⊕b∈G,(2)存在e∈G,都有a⊕e=e⊕a=a,则称G关于运算⊕为“融洽集”.现给出下列集合和运算: ①G={非负整数},⊕为整数的加法. ②G={偶数},⊕为整数的乘法. ③G={平面向量},⊕为平面向量的加法. ④G={二次三项式},⊕为多项式的加法. ⑤G={虚数},⊕为复数的乘法. 其中G关于运算⊕为“融洽集”的是 .(写出所有“融洽集”的序号) |
|
定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),f(1)=2,则f(-3)= . | |