函数y=的导数是( ) A.cos B.-sin C.cosx-1 D.sin |
|
设a∈R,若函数y=ex+ax,x∈R,有大于零的极值点,则( ) A.a<-1 B.a>-1 C. D. |
|
已知函数y=xf′(x)的图象如图所示(其中f′(x)是函数f(x)的导函数),下面四个图象中y=f(x)的图象大致是( ) A. B. C. D. |
|
设f(x)=xlnx,若f′(x)=2,则x=( ) A.e2 B.e C. D.ln2 |
|
函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点的个数为( ) A.1 B.2 C.3 D.4 |
|
设曲线y=ax2在点(1,a)处的切线与直线2x-y-6=0平行,则a=( ) A.1 B. C. D.-1 |
|
下列表述正确的是( ) ①归纳推理是由部分到整体的推理; ②归纳推理是由一般到一般的推理; ③演绎推理是由一般到特殊的推理; ④类比推理是由特殊到一般的推理; ⑤类比推理是由特殊到特殊的推理. A.①②③ B.②③④ C.②④⑤ D.①③⑤ |
|
有人玩掷正四面体骰子走跳棋的游戏,已知正四面体骰子四个面上分别印有A,B,C,D,棋盘上标有第0站、第1站、第2站、…、第100站.一枚棋子开始在第0站,棋手每掷一次骰子,若掷出后骰子为A面,棋子向前跳2站,若掷出后骰子为B,C,D中的一面,则棋子向前跳1站,直到棋子跳到第99站(胜利大本营)或第100站(失败大本营)时,该游戏结束.设棋子跳到第n站的概率为Pn(n∈N). (Ⅰ)求P,P1,P2; (Ⅱ)求证:; (Ⅲ)求玩该游戏获胜的概率. |
|
设数列{an}的前n项和为Sn,对一切n∈N*,点都在函数的图象上. (Ⅰ)求a1,a2,a3及数列{an}的通项公式an; (Ⅱ)将数列{an}依次按1项、2项、3项、4项循环地分为(a1),(a2,a3),(a4,a5,a6),(a7,a8,a9,a10);(a11),(a12,a13),(a14,a15,a16),(a17,a18,a19,a20);(a21),…,分别计算各个括号内各数之和,设由这些和按原来括号的前后顺序构成的数列为{bn},求b5+b100的值; (Ⅲ)令(n∈N*),求证:2≤g(n)<3. |
|
(此题平行班做) 某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示: (Ⅰ)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是,请完成上面的2×2列联表;
|
|||||||||