已知圆O:x2+y2=8交x轴于A,B两点,曲线C是以AB为长轴,直线l:x=-4为准线的椭圆. (Ⅰ)求椭圆的标准方程; (Ⅱ)若M是直线l上的任意一点,以OM为直径的圆K与圆O相交于P,Q两点,求证:直线PQ必过定点E,并求出点E的坐标; (Ⅲ)如图所示,若直线PQ与椭圆C交于G,H两点,且,试求此时弦PQ的长. |
|
设各项均为正数的数列{an}的前n项和为Sn,已知2a2=a1+a3,数列是公差为d的等差数列. (Ⅰ)求数列{an}的通项公式(用n,d表示); (Ⅱ)设c为实数,对满足m+n=3k且m≠n的任意正整数m,n,k,不等式Sm+Sn>cSk都成立.求c的最大值. |
|
如图,△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行 四边形,DC⊥平面ABC,AB=2,已知AE与平面ABC所成的角为θ, 且. (1)证明:平面ACD⊥平面ADE; (2)记AC=x,V(x)表示三棱锥A-CBE的体积,求V(x)的表达式; (3)当V(x)取得最大值时,求二面角D-AB-C的大小. |
|
甲、乙、丙、丁4名同学被随机地分到A、B、C三个社区参加社会实践,要求每个社区至少有一名同学. (1)求甲、乙两人都被分到A社区的概率; (2)求甲、乙两人不在同一个社区的概率; (3)设随机变量ξ为四名同学中到A社区的人数,求ξ的分布列和Eξ的值. |
|
已知向量=(sinB,1-cosB)与向量=(2,0)的夹角为,其中A、B、C是△ABC的内角. (Ⅰ)求角B的大小; (Ⅱ)求sinA+sinC的取值范围. |
|
有以下四个命题: ①△ABC中,“A>B”是“sinA>sinB”的充要条件; ②若数列{an}为等比数列,且a4=4,a8=9,则a6=±6; ③不等式的解集为{x|x<-5}; ④若P是双曲线上一点,F1,F2分别是双曲线的左、右焦点,且|PF1|=7,则|PF2|=13. 其中真命题的序号为 .(把正确的序号都填上) |
|
从集合{-1,-2,-3,0,1,2,3,4}中,随机选出4个数组成子集,使得这4个数中的任何两个数之和不等于1,则取出这样的子集的概率为 . | |
已知向量满足且∥,则实数m= . | |
若直线ax+2y+3a=0与直线3x+(a-1)y=-7+a平行,则实数a的值为 . | |
过抛物线y2=2px(p>0)的焦点F的直线l与抛物线在第一象限的交点为A,与抛物线的准线的交点为B,点A在抛物线准线上的射影为C,若,则抛物线的方程为( ) A.y2=4 B.y2=8 C.y2=16 D. |
|