已知函数. (Ⅰ)当a=1时,∃x∈[1,e]使不等式f(x)≤m,求实数m的取值范围; (Ⅱ)若在区间(1,+∞)上,函数f(x)的图象恒在直线y=2ax的下方,求实数a的取值范围. |
|
如图,在三棱柱ABC-A1B1C1中,所有的棱长都为2,∠A1AC=60° (Ⅰ)求证:A1B⊥AC; (Ⅱ)当三棱柱ABC-A1B1C1的体积最大时,求平面A1B1C1与平面ABC所成的锐角的余弦值. |
|
某甲有一个放有3个红球、2个白球、1个黄球共6个球的箱子;某乙也有一个放有3个红球、2个白球、1个黄球共6个球的箱子. (Ⅰ)若甲在自己的箱子里任意取球,取后不放回,每次只取一个球,直到取到红球为止,求甲取球次数ξ的数学期望; (Ⅱ)若甲、乙两人各从自己的箱子里任取一球比颜色,规定同色时为甲胜,异色时为乙胜,这个游戏规则公平吗?请说明理由. |
|
在△ABC中,a,b,c分别为角A、B、C的对边,且满足b2+c2-a2=bc. (Ⅰ)求角A的值; (Ⅱ)若a=,设角B的大小为x,△ABC的周长为y,求y=f(x)的最大值. |
|
给出下列四个命题: ①命题:“设a,b∈R,若ab=0,则a=0或b=0”的否命题是“设a,b∈R,若ab≠0,则a≠0且b≠0”; ②将函数y=sin(2x+)的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),再向右平移个单位长度,得到函数y=cosx的图象; ③用数学归纳法证明(n+1)(n+2)…(n+n)=2n•1•2•3…(2n-1)(n∈N*)时,从“k”到“k+1”的证明,左边需增添的一个因式是2(2k+1); ④函数f(x)=ex-x-1(x∈R)有两个零点. 其中所有真命题的序号是 . |
|
一个三棱锥的三视图如图所示,其正视图、侧视图、俯视图的面积分别是1,2,4,则这个几何体的体积为 . | |
已知函数f(x)=x3+ax2+bx(a,b∈R)的图象如图所示,它与直线y=0在原点处相切,此切线与函数图象所围区域(图中阴影部分)的面积为,则a的值为 . | |
已知抛物线和双曲线都经过点M(1,2),它们在x轴上有共同焦点,抛物线的顶点为坐标原点,则双曲线的标准方程是 . | |
在周长为16的△PMN中,MN=6,则的取值范围是( ) A.[7,+∞) B.(0,7] C.(7,16] D.[7,16) |
|
设Sn是各项都是正数的等比数列{an} 的前n项和,若,则公比q的取值范围是( ) A.q>0 B.0<q≤1 C.0<q<1 D.0<q<1或q>1 |
|