设函数f(x)=(x-1)2+blnx,其中b为常数. (1)当时,判断函数f(x)在定义域上的单调性; (2)若函数f(x)的有极值点,求b的取值范围及f(x)的极值点; (3)求证对任意不小于3的正整数n,不等式都成立. |
|
已知:圆x2+y2=1过椭圆的两焦点,与椭圆有且仅有两个公共点:直线y=kx+m与圆x2+y2=1相切,与椭圆相交于A,B两点记. (Ⅰ)求椭圆的方程; (Ⅱ)求k的取值范围; (Ⅲ)求△OAB的面积S的取值范围. |
|
如图1,直角梯形ABCD中,AD∥BC,∠ABC=90°,E,F分别为边AD和BC上的点,且EF∥AB,AD=2AE=2AB=4FC=4,将四边形EFCD沿EF折起如图2的位置,使AD=AE. (I)求证:BC∥平面DAE; (II)求四棱锥D-AEFB的体积; (III)求面CBD与面DAE所成锐二面角的余弦值. |
|
已知在数列{an}中,a1=1,当n≥2时,其前n项和Sn满足. (Ⅰ) 求Sn的表达式; (Ⅱ) 设,求数列{bn}的前n项和Tn. |
|
如图,A是单位圆与x轴正半轴的交点,点B、P在单位圆上,且,∠AOB=α,∠AOP=θ(0<θ<π),,四边形OAQP的面积为S. (Ⅰ)求cosα+sinα; (Ⅱ)求的最大值及此时θ的值θ. |
|
已知f(x)=(x+1)(x+2)(x+3)…(x+n),(n≥2,n∈N),其导函数为f′(x),,则a100= . | |
一个人随机的将编号为1,2,3,4的四个小球放入编号为1,2,3,4的四个盒子,每个盒子放一个小球,球的编号与盒子的编号相同时叫做放对了,否则叫做放错了.设放对的个数记为ξ,则ξ的期望Eξ= . | |
已知关于x的方程x3-ax2-2ax+a2-1=0有且只有一个实根,则实数a的取值范围是 . | |
如图,△OAB中|OA|=3,|OB|=2,点P在线段AB的垂直平分线上,记向量的值为 . |
|
已知曲线C:x2+y2=m恰有三个点到直线12x+5y+26=0距离为1,则m= . | |