若命题甲:x≠2或y≠3;命题乙:x+y≠5,则( ) A.甲是乙的充分非必要条件 B.甲是乙的必要非充分条 C.甲是乙的充要条件 D.甲既不是乙的充分条件,也不是乙的必要条件 |
|
设集合A={x|x2-1>0},B={x|log2x>0|},则A∩B等于( ) A.{x|x>1} B.{x|x>0} C.{x|x<-1} D.{x|x>1或x<-1} |
|
已知函数和函数g(x)=lnx,记F(x)=f(x)+g(x). (1)当时,若f(x)在[1,2]上的最大值是f(2),求实数a的取值范围; (2)当a=1时,判断F(x)在其定义域内是否有极值,并予以证明; (3)对任意的,若F(x)在其定义域内既有极大值又有极小值,试求实数a的取值范围. |
|
时值5月,荔枝上市.某市水果市场由历年的市场行情得知,从5月10日起的60天内,荔枝的售价S(t)(单位:元/kg)与上市时间t(单位:天)的关系大致可用如图1所示的折线ABCD表示,每天的销售量M(t)(单位:吨)与上市时间t(单位:天)的关系大致可用如图2所示的抛物线段OEF表示,其中O为坐标原点,E是抛物线的顶点. (1)请分别写出S(t),M(t)关于t的函数关系式; (2)在这60天内,该水果市场哪天的销售额最大? |
|
数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,总有an,Sn,an2成等差数列. (1)求数列{an}的通项公式; (2)设数列{bn}的前n项和为Tn,且,求证:对任意实数x∈(1,e](e是常数,e=2.71828…)和任意正整数n,总有Tn<2; (3)正数数列{cn}中,an+1=(cn)n+1(n∈N*),求数列{cn}中的最大项. |
|
已知定点A、B间的距离为2,以B为圆心作半径为2的圆,P为圆上一点,线段AP的垂直平分线l与直线PB交于点M,当P在圆周上运动时,点M的轨迹记为曲线C. (1)建立适当的坐标系,求曲线C的方程,并说明它是什么样的曲线; (2)试判断l与曲线C的位置关系,并加以证明. |
|
如图,在底面是矩形的四棱锥P-ABCD中,PA⊥底面ABCD,E、F分别是PC、PD的中点,求证: (Ⅰ)EF∥平面PAB; (Ⅱ)平面PAD⊥平面PDC. |
|
已知函数f(x)=2cos2x+2sinxcosx. (Ⅰ)求f(x)的最小正周期; (Ⅱ)求f(x)的单调增区间. |
|
已知是R上的增函数,则a的取值范围是 . | |
已知数列{an}满足a1=1,(n≥2,n∈N*),则a2010= . | |