已知数列{an}中,a1=1,a1+2a2+3a3+…+nan= (1)求数列{an}的通项an; (2)求数列{n2an}的前n项和Tn; (3)若存在n∈N*,使得an≥(n+1)λ成立,求实数λ的取值范围. |
|
设椭圆(a>b>0)的焦点分别为F1(-1,0)、F2(1,0),直线l:x=a2交x轴于点A,且. (Ⅰ)试求椭圆的方程; (2)过F1、F2分别作互相垂直的两直线与椭圆分别交于D、E、M、N四点(如图所示),若四边形DMEN的面积为,求DE的直线方程. |
|
已知函数f(x)=(x2-3x+3)•ex. (Ⅰ)试确定t的取值范围,使得函数f(x)在[-2,t]上为单调函数; (2)当t>-2时,判断f(-2)和f(t)的大小,并说明理由; (3)求证:当1<t<4时,关于x的方程:在区间[-2,t]上总有两个不同的解. |
|
如图,在三棱柱ABC-A1B1C1中,BB1⊥面ABC,∠BAC=90°,AC=AB=AA1,E是BC的中点. (1)求证:AE⊥B1C; (2)求异面直线AE与A1C所成的角; (3)若G为C1C中点,求二面角C-AG-E的正切值. |
|
某班t名学生在2011年某次数学测试中,成绩全部介于80分与130分之间,将测试结果按如下方式分成五组,第一组[80,90);第二组[90,100)…第五组[120,130],下表是按上述分组方法得到的频率分布表:
(2)校长决定从第一组和第五组的学生中随机抽取2名进行交流,求第一组至少有一名学生被抽到的概率; (3)设从第一组或第五组中任意抽取的两名学生的数学测试成绩分别记为m,n,求事件“|m-n|≤10”的概率. |
|||||||||||||||||||
已知向量m=(,),n=(,),记f(x)=m•n; (1)若f(x)=1,求的值; (2)若△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函 数f(A)的取值范围. |
|
设奇函数y=f(x)(x∈R),满足对任意t∈R都有f(1+t)=f(1-t),且x∈[0,1]时,f(x)=-x2,则的值等于 . | |
在直角坐标平面内,已知点列P1(1,2),P2(2,22),P3(3,23),…,Pn(n,2n),…如果k为正偶数,则向量的纵坐标(用k表示)为 . | |
已知离心率为的双曲线的左焦点与抛物线y2=2mx的焦点重合,则实数m= . | |
已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为 . | |